Simple Java

Chris Piech
CS106A, Stanford University

Checkerboard

Let’s fix an old program

Review: Operations

Operations on numerical types

Operations:
+ “addition”
- “subtraction”
* “multiplication”
/ “division” (different for int vs. double)
% “remainder”
Precedence (in order):
() highest
*9 / ’ %
+, - lowest

Operators in same precedence category evaluated left to right=.

Expressions Short Hand

int x = 3;

x =x+ 1; x += 1; x++;
X =x+5; X += 5;

Xx =x - 1; x -=1; X—-;

¢
I
¢
~
D
*
~
I
D

Review: Boolean Expressions

Boolean expression 1s just a fest for a condition
Essentially, evaluates to true or false

Value comparisons:
== “equals” (note: not single =)
'= “notequals” (cannot say <>)
> “greater than”
< “less than”
>= “greater than or equal to”
<= “less than or equal to”

Today’s Goal

1. How to use constants

2. Basics of boolean variables
3. Understand For loops
4. Know variable scope

Today’s Route

Simple

—

.

Scope

Booleans

/

George Boole

Piech, CS106A, Stanford University

Boolean variable type

Boolean Expressions

Value comparisons (in order of precidence):

' 66n0t39

Ip If p istrue then !p isfalse (and vice versa)

&& “and” Evaluates to true if both sides are true

p && g

1| “or” Evaluates to true if eitherp or q (or both) are
P || g true

boolean p = (x != 1) || (x != 2);

boolean p = (x != 1) && (X != 2);

Once upon a time..

X was looking for love!
Ur;(: X =5; J
if(tookingForLove()) {
inty =5;
;
println(x + v);

15\

X

X was looking for love!

int x =5;

{ if(lookingForLove()) { J

infy =5;

;
println(x + vy);

15\

X

X was looking for love!

X was definitely

int x = 5; looking for love

if(lookingForLove()) { J
inty =5;

;

println(x + vy);

15\

X

And mety

int x =5;
if(lookingForLove()) {
{ intf y = 5; J
;
println(x + y);

And mety

int x =5;
if(lookingForLove()) {
{ intf y = 5; J
;
println(x + y);

5 5 Hi, I'my
21 L

“Wow!”

And mety

int x =5;
if(lookingForLove()) {
{ intf y = 5; J
;
println(x + y);

Wow m),5&
X Y

And mety

int x = 5;

if(lookingForLove()) {
{ inty =5;

7

println(x + y);

5 5 We have so much
In common _

And mety

int x =5;

if(lookingForLove()) {
{ inty =5;

f

println(x + y);

And mety

int x =5;

if(lookingForLove()) {
{ inty =5;

f

println(x + y);

And mety

int x =5;
if(lookingForLove()) {
{ inty =5; J
;
println(x + y);

They got along

int x =5;
if(lookingForLove()) {
{ intf y = 5; J
;
println(x + y);

It was a beautiful match...

But then tragedy struck.

Tragedy Struck

int x =5;
if(lookingForLove()) {
{ intf y = 5; J
;
println(x + y);

Tragedy Struck

int x = 5;
if(lookingForLove()) {
inty =5;

println(x + y);

Tragedy Struck

int x = 5;
if(lookingForLove()) {
inty =5;

println(x + y);

N0000000000000000!

You see...

When a program exits a code block...

int x = 5;
if(lookingForLove()) {
inty =5;

println(x + vy);

All variables declared inside that block..

int x = 5;
if(lookingForLove()) {
inty =5;

println(x + vy);

Get deleted from memory!

int x = 5;
if(lookingForLove()) {
inty =5;

println(x + vy);

Since y was declared in the if-block

int x =5;

if(lookingForLove()) §
inty =5;

} p

println(x + v);

It gets deleted from memory here

int x = 5;
if(lookingForLove()) {
inty =5;

println(x + vy);

And doesn’t exist here

int x = 5;
if(lookingForLove()) {
inty =5;

;
{ printin(x + y); J

And doesn’t exist here

e N

Int E Undefined

|F(l¢ var.iable Y.

} \ /
[printin(x + y); }

| @
Lx‘\ wr

The End

Sad times ®

Variables have a lifetime (called scope)

public void run(){
double v = 8;
if (condition) {
v = 4;
... Some code

}

... sSome other code

Variables have a lifetime (called scope)

public void run(){
double = 8:
if (condition) {
v = 4;
... Some code

}

... sSome other code

Vars come to existence when declared

public void run(){

double v = 8; <\,Comestolife here
if (condition) {

v = 4;
... Some code
8
}
... Some other code V

Live until end of their code block

public void run(){
double v = 8;

i1f (condition) { This is the inner most
v = 4 - code blockin which it was
declared....
... Some code 4
})4\
... Some other code V

Live until end of their code block

public void run(){
double v = 8;
if (condition)

{ Still alive here...
v = 4; é-/
... Some code
})4\

... Some other code V

Live until end of their code block

public void run(){
double v = 8;

if (condition) {

v = 4;
... Some code
4
}
... Some other code V

}

K_It dies here (at the end of its code block)

Live until end of their code block

public void run(){
double v = 8;
if (condition) {
v = 4;
... some code QP
} vV

... sSome other code

}

K_It dies here (at the end of its code block)

Example 2

public void run(){

... some code

if (condition
r int w = 4; This is the
... some code scope of w

\J

... sSome other code

Example 2

public void run(){

... Some code w comes to life here
if (condition) { /

int w = 4;

... Some code
} (\ - — wdieshere (at

the end of its

... sSome other code code block)

A Variab‘Q
love S‘\""\‘)

Chapter 2

The programmer fixed her bug

X was looking for love!

- int x = 5; J
if(tookingForLove()) {
inty =5;

println(x + vy);

;

15\

X was looking for love...

X was definitely

int x = 5; looking for love
{ if(lookingForLove()) { }
infy =5;

println(x + vy);
;

15\

Xmety

int x = 5;
if(lookingForLove()) {
{ inty = 5; }
prinfin(X + y);
;

Since they were both “in scope”

int x = 5;
if(lookingForLove()) {
intfy =5;
{ println(x + vy); }

The story had a happy ending!

Scope Formally

The scope of a variable refers to the section of code
where a variable can be accessed.
Scope starts where the variable is declared.

Scope ends at the termination of the inner-most
code block in which the variable was defined.

A code block is a chunk of code between { } brackets

Game Show

O ® GameShow

Welcome to the CS106A game show!

Choose a door and win a prize
Door: 2

You chose door 2

You win $-

Choose a Door

int door = readInt("Door: ");
// while the input is invalid
while{door < 1]||[door > 3} {
// tell the user the input was invalid
println("Invalid door!");
// ask for a new input
door = readInt("Door: ");

|| or
&& and

The Door Logic

int prize = 3;
if(door == 1) {
prize = 2 + 9 / 10 * 100;
} else if(door == 2) {
boolean locked = prize % 2 != 1;

if(!locked) {
prize += 7;
}
} else if(door == 3) {
prize++;

}

How would you println “Nick rocks socks”
100 times

println(“Nick
println(“Nick
println(“Nick
println(“Nick
println(“Nick
println(“Nick
println(“Nick
println(“Nick
println(“Nick
println(“Nick
println(“Nick
println(“Nick
println(“Nick
println(“Nick
println(“Nick
println(“Nick
println(“Nick
println(“Nick

rocks
rocks
rocks
rocks
rocks
rocks
rocks
rocks
rocks
rocks
rocks
rocks
rocks
rocks
rocks
rocks
rocks
vocks

socks!”);
socks!”);
socks!”);
socks!”);
socks!”);
socks!”);
socks!”);
socks!”);
socks!”);
socks!”);
socks!”);
socks!”);
socks!”);
socks!”);
socks!”);
socks!”);
socks!”);
socksdi’);

For Loop Redux

Enters the loop if This fing i
¢ \ine 1S run this condition each - S run
TS T+ pefore Cod e the
st passes
e,) ¥s gets
nee tar o .
the for e by

~— e g
for(int i = 0; i < 100; i++) {
println(“Nick rocks socks!”);

For Loop Redux

[for(int 1 =0; 1< 3; 1i++) {]
println(“Nick rocks socks!”);

}

f 6 O 6 For Loop Redux

For Loop Redux

for([int i = O} i< 3; 1++) |
printIn(”“Nick rocks socks!”);

}

f 006 For Loop Redux

For Loop Redux

for(int i = 0;[i < 3} i++) {
println(“Nick rocks socks!”);

}

f 006 For Loop Redux

For Loop Redux

for(int 1 = 0; 1 < 3; 1++) {
| println(“Nick rocks socks!”); |

}

f 6 O 8 For Loop Redux

Nick rocks socks

For Loop Redux

for(int 1 = 0; 1 < 3; 1++) {
println(“Nick rocks socks!”);

f 6 O 6 For Loop Redux

Nick rocks socks

For Loop Redux

for(int i = 0; i < 3; i++i {
println(“Nick rocks socks!”);

f 6 ﬂ O For Loop Redux

Nick rocks socks

For Loop Redux

for(int i = 0;|1i < 3} i++) |
println(“Nick rocks socks!”);

f 6 ﬂ O For Loop Redux

Nick rocks socks

For Loop Redux

for(int 1 = 0

+ 1 < 33

println(“Nick rocks

i++) {
socks!")

806

For Loop Redux

4

Nick rocks socks
Nick rocks socks

Nick rocks socks

You can use the for loop variable

Piech, CS106A, Stanford University

How would you println the first 100 even
numbers?

Printing Even Numbers

@ PrintEven...

Printing Even Numbers

for(int 1 = 0; 1 < NUM NUMS; i++) {
println(i * 2);
}

Printing Even Numbers

for(int 1 = 0; 1 < 3; 1++) {
println(i * 2);
}

6 f'\ 0 For Loop Redux

Printing Even Numbers

|for(int i = 0; i < 3; i++) { |
println(i * 2);

}

f 6 0 6 For Loop Redux

Printing Even Numbers

for(int 1 = O} i< 3; i++) {
printIn(i * 2);
}

8 O 6 For Loop Redux

Printing Even Numbers

for(int 1 = 0;|1 < 3 1i++) {
println(i * 2);

}

6 f\ 0 For Loop Redux

Printing Even Numbers

for(int 1 = 0; 1 < 3; 1++) {
println(i * 2);

f 8 O 6 For Loop Redux

Printing Even Numbers

for(int 1 = 0; 1 < 3;|1i++) {
println(i * 2);

}

6 f\ 0 For Loop Redux

Printing Even Numbers

for(int 1 = 0;|1 < 3} it++) {
println(i * 2);

}

6 O 6 For Loop Redux

Printing Even Numbers

for(int 1 = 0; 1 < 3; 1++) {
println(i * 2);

f 8 O 6 For Loop Redux

Printing Even Numbers

for(int 1 = 0; 1 < 3;| 1++) {
println(i * 2);

}

6 f\ 0 For Loop Redux

Printing Even Numbers

for(int 1 = 0; |1 < 3|; 1++) {
println(i * 2);

}

6 f\ 0 For Loop Redux

Printing Even Numbers

for(int 1 = 0; 1 < 3; 1++) {
println(i * 2);

f 8 O 6 For Loop Redux

Printing Even Numbers

for(int 1 = 0; 1 < 3;|1i++) {
println(i * 2);

Printing Even Numbers

for(int i = 0;| i < 3 i++) {
println(i * 2);

Printing Even Numbers

for(int 1 = 0; 1 < 3; 1i++) {
println(i * 2);

Printing Even Numbers

for(int 1 = 0; 1 < 3; 1++) {
println(i * 2);

6 f'\ 0 For Loop Redux

® Checkerboard

Milestone 1

[NON) Checkerboard

Piech, CS106A, Stanford University

Milestone 2

Checkerboard

Piech, CS106A, Stanford University

Milestone 3

O Checkerboard

Today’s Route

' You are here

—

._/

~2 Graphics __=
Review

/

Today’s Goal

1. How to use constants

2. Basics of boolean variables
3. Understand For loops
4. Know variable scope

