
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.
Based	on	slides	created	by	Keith	Schwarz,	Mehran	Sahami,	Eric	Roberts,	Stuart	Reges,	and	others.

CS	106A,	Lecture	3
Problem-solving	with	Karel

suggested	reading:
Karel,	Ch.	5-6

2

Plan For Today
•Announcements
•Recap:	Control	Flow
•Demo:	HurdleJumper
•Decomposition
•Practice:	Roomba
•Debugging

3

Plan For Today
•Announcements
•Recap:	Control	Flow
•Demo:	HurdleJumper
•Decomposition
•Practice:	Roomba
•Debugging

4

Plan For Today
•Announcements
•Recap:	Control	Flow
•Demo:	HurdleJumper
•Decomposition
•Practice:	Roomba
•Debugging

5

Karel Knows 4 Commands

move

turnLeft

putBeeper

pickBeeper

6

Karel Knows 4 Commands

move

turnLeft

putBeeper

pickBeeper

“methods”

7

Defining New Commands
We	can	make	new	commands	(or	methods)	for	Karel.		This	lets	us	
decompose our	program	into	smaller	pieces	that	are	easier	to	
understand.

private void turnRight() {
turnLeft();
turnLeft();
turnLeft();

}

private void name() {
statement;
statement;
...

}

For	example:

8

Control Flow: For Loops
for (int i = 0; i < max; i++) {

statement;
statement;
...

}

Repeats	the	statements	in	the	body	max times.

9

Control Flow: While Loops
while (condition) {

statement;
statement;
...

}

Repeats	the	statements	in	the	body	until	condition is	no	longer	true.
Each	time,	Karel	executes	all	statements,	and	then checks	the	condition.

10

Possible Conditions

Test Opposite What	it	checks
frontIsClear() frontIsBlocked() Is	there	a	wall	in	front	of	Karel?
leftIsClear() leftIsBlocked() Is	there	a	wall	to	Karel’s	left?
rightIsClear() rightIsBlocked() Is	there	a	wall	to	Karel’s	right?
beepersPresent() noBeepersPresent() Are	there	beepers	on	this	corner?
beepersInBag() noBeepersInBag() Any	there	beepers	in	Karel’s	bag?
facingNorth() notFacingNorth() Is	Karel	facing	north?
facingEast() notFacingEast() Is	Karel	facing	east?
facingSouth() notFacingSouth() Is	Karel	facing	south?

facingWest() notFacingWest() Is	Karel	facing	west?

This	is	Table	1 on	page	18	of	the	Karel	coursereader.

11

Loops Overview

I want Karel to repeat
some commands!

for loop while loop

Know how
many times

Don’t know
how many times

12

Fencepost Structure
The	fencepost	structure	is	useful	when	you	want	to	loop	a	set	of	
statements,	but	do	one	part	of	that	set	1	additional time.

putBeeper(); // post
while (frontIsClear()) {

move(); // fence
putBeeper(); // post

}

while (frontIsClear()) {
putBeeper(); // post
move(); // fence

}
putBeeper(); // post

13

If/Else Statements
if (condition) {

statement;
statement;
...

} else {
statement;
statement;
...

}

Runs	the	first	group	of	statements	if	condition is	true;	otherwise,	runs	
the	second	group	of	statements.

14

Infinite Loops

15

Infinite Loops

Rinse
Lather

Repeat

16

Infinite Loops
private void turnToWall() {

while(leftIsClear()) {
turnLeft();

}
}

17

Infinite Loops
private void turnToWall() {

while(leftIsClear()) {
turnLeft();

}
}

18

Infinite Loops
private void turnToWall() {

while(leftIsClear()) {
turnLeft();

}
}

19

Infinite Loops
private void turnToWall() {

while(leftIsClear()) {
turnLeft();

}
}

20

Infinite Loops
// Karel will keep turning left forever!
private void turnToWall() {

while(leftIsClear()) {
turnLeft();

}
}

21

Infinite Loops
private void turnToWall() {

while(leftIsClear()) {
if (frontIsBlocked()) {

turnLeft();
}

}
}

22

Infinite Loops
// Karel will be stuck in this loop forever!
private void turnToWall() {

while(leftIsClear()) {
if (frontIsBlocked()) {

turnLeft();
}

}
}

23

Plan For Today
•Announcements
•Recap:	Control	Flow
•Demo:	HurdleJumper
•Decomposition
•Practice:	Roomba
•Debugging

24

HurdleJumper
• We	want	to	write	a	Karel	program	that	hops	hurdles.

• Karel starts at (1,1) facing East, and should end up at the end of
row 1 facing east.

• The world has 9 columns.
• There are an unknown number of ”hurdles” (walls) of varying

heights that Karel must ascend and descend to get to the other
side.

25

HurdleJumper

Demo

26

Pre/post comments
• precondition:	Something	you	assume is	true	at	the	start	of	a	method.
• postcondition:	Something	you	promise is	true	at	the	end	of	a	method.

– pre/post	conditions	should	be	documented	using	comments.

/*
* Jumps Karel over one hurdle of arbitrary height.
* Pre: Karel is facing east, next to a hurdle.
* Post: Karel is facing east at the bottom of the other
* side of the hurdle.
*/

public void jumpHurdle() {
ascendHurdle();
move();
descendHurdle();

}

27

Plan For Today
•Announcements
•Recap:	Control	Flow
•Demo:	HurdleJumper
•Decomposition
•Practice:	Roomba
•Debugging

28

Decomposition
• Breaking	down	problems	into	smaller,	more	approachable	sub-
problems	(e.g.	our	own	Karel	commands)

• Each	piece	should	solve	one problem/task	(<	~	20	lines	of	code)
– Descriptively-named
– Well-commented!

• E.g.	getting	up	in	the	morning:
– Wake	up
– Brush	teeth

• Put	toothpaste	on	toothbrush
• Insert	toothbrush	into	mouth
•Move	toothbrush	against	teeth
•…

– …

29

Top-Down Design
• Start	from	a	large	task	and	break	it	up	into	smaller	pieces
• Ok	to	write	your	program	in	terms	of	commands	that	don’t	exist	yet
• E.g.	HurdleJumper

30

Plan For Today
•Announcements
•Recap:	Control	Flow
•Demo:	HurdleJumper
•Decomposition
•Practice:	Roomba
•Debugging

31

Practice: Roomba
• Write	a	Roomba Karel	that	sweeps	the	entire	world	of	all	beepers.

– Karel	starts	at	(1,1)	facing	East.
– The	world	is	rectangular,	and
some	squares	contain	beepers.

– There	are	no	interior	walls.
– When	the	program	is	done,	the
world	should	contain	0	beepers.

– Karel's	ending	location
does	not	matter.

• How	should	we	approach
this	tricky	problem?

.

.

.

.

.

.

.

.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

32

Possible algorithm 1

.

.

.

.

.

.

.

.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

33

Possible algorithm 2

.

.

.

.

.

.

.

.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

34

Possible algorithm 3

.

.

.

.

.

.

.

.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

35

Possible algorithm 4

.

.

.

.

.

.

.

.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

36

Roomba

Demo

37

Plan For Today
•Announcements
•Recap:	Control	Flow
•Demo:	HurdleJumper
•Decomposition
•Practice:	Roomba
•Debugging

38

Debugging
• Finding	and	fixing	unintended	behavior	in	your	programs.
• Try	to	narrow	down	where in	your	code	you	think	the	bug	is	
occurring.		(E.g.	what	command	or	set	of	commands)

• We	can	use	Eclipse	to	help	us	figure	out	what	our	program	is	doing.

39

BuggyRoomba

Demo

40

Recap
•Announcements
•Recap:	Control	Flow
•Demo:	HurdleJumper
•Decomposition
•Practice:	Roomba
•Debugging

Next	time:	An	introduction	to	Java

