Introduction to Java

suggested reading:

Java Ch. 1, 2.1-2.4, 3.1-3.4
Plan For Today

• Announcements
• Bye, Karel!
• Console Programs
• Variables
• Expressions
• Practice: Receipt
Plan For Today

• Announcements
• Bye, Karel!
• Console Programs
• Variables
• Expressions
• Practice: Receipt
Bye, Karel!

I will miss you.

Enjoy Java!

See you on the midterm 😢.
Plan For Today

• Announcements
• Bye, Karel!
• Console Programs
• Variables
• Expressions
• Practice: Receipt
Java

Program

Karel Program

Console Program

Graphics Program

SuperKarel Program
Our First Java Program

Hello, world!
Our First Java Program

```java
import acm.program.*;

public class HelloWorld extends ConsoleProgram {
    public void run() {
        println("Hello, world!");
    }
}
```
import acm.program.*;

public class Name extends ConsoleProgram {
 public void run() {
 statements;
 }
}

• Unlike Karel, many programs produce their behavior as text.
• console: Text box into which the behavior is displayed.
 – output: Messages displayed by the program.
 – input: Data read by the program that the user types.
public class Hello extends ConsoleProgram {
 public void run() {
 println("Hello, world!");
 println();
 println("This program produces");
 println("four lines of output");
 }
}
println

• A statement that prints a line of output on the console, and goes to the next line.
 – pronounced "print-linn"

• Two ways to use println:

 • println("text");
 • Prints the given message as output, and goes to the next line.
 • A message is called a string; it starts/ends with a " quote character.
 • The quotes do not appear in the output.
 • A string may not contain a " character.

 • println();
 Prints a blank line of output.
public class HelloWorld extends ConsoleProgram {
 public void run() {
 print("Hello, ");
 print("world!");
 }
}

Same as println, but does not go to the next line.
• **escape sequence**: A special sequence of characters used to represent certain special characters in a string.

\t tab character
\n new line character
" quotation mark character
\\ backslash character

– Example:
```
println("\\hello\\nhow\\tare\\n"\\you\\"\\?\\\\");
```

– Output:
```
\hello
how are "you"?\n```
public class Add2Integers extends ConsoleProgram {
    public void run() {
        println("This program adds two numbers.");
        int n1 = readInt("Enter n1: ");
        int n2 = readInt("Enter n2: ");
        int total = n1 + n2;
        println("The total is " + total + ".");
    }
}

<table>
<thead>
<tr>
<th>n1</th>
<th>n2</th>
<th>total</th>
</tr>
</thead>
</table>
```java
public class Add2Integers extends ConsoleProgram {
 public void run() {
 println("This program adds two numbers.");
 int n1 = readInt("Enter n1: ");
 int n2 = readInt("Enter n2: ");
 int total = n1 + n2;
 println("The total is " + total + ".");
 }
}
```

public class Add2Integers extends ConsoleProgram {
    public void run() {
        println("This program adds two numbers.");
        int n1 = readInt("Enter n1: ");
        int n2 = readInt("Enter n2: ");
        int total = n1 + n2;
        println("The total is " + total + ".");
    }
}

This program adds two numbers.
public class Add2Integers extends ConsoleProgram {
    public void run() {
        println("This program adds two numbers.");
        int n1 = readInt("Enter n1: ");
        int n2 = readInt("Enter n2: ");
        int total = n1 + n2;
        println("The total is " + total + ".");
    }
}

This program adds two numbers.
```java
public class Add2Integers extends ConsoleProgram {
 public void run() {
 println("This program adds two numbers.");
 int n1 = readInt("Enter n1: ");
 int n2 = readInt("Enter n2: ");
 int total = n1 + n2;
 println("The total is " + total + ".");
 }
}
```
public class Add2Integers extends ConsoleProgram {
    public void run() {
        println("This program adds two numbers.");
        int n1 = readInt("Enter n1: ");
        int n2 = readInt("Enter n2: ");
        int total = n1 + n2;
        println("The total is " + total + ".");
    }
}
public class Add2Integers extends ConsoleProgram {
    public void run() {
        println("This program adds two numbers.");
        int n1 = readInt("Enter n1: ");
        int n2 = readInt("Enter n2: ");
        int total = n1 + n2;
        println("The total is " + total + ".");
    }
}

This program adds two numbers.
Enter n1: 17

17   

17  

total

17
public class Add2Integers extends ConsoleProgram {
    public void run() {
        println("This program adds two numbers.");
        int n1 = readInt("Enter n1: ");
        int n2 = readInt("Enter n2: ");
        int total = n1 + n2;
        println("The total is "+ total + ".");
    }
}

This program adds two numbers.
Enter n1: 17
public class Add2Integers extends ConsoleProgram {
    public void run() {
        println("This program adds two numbers.");
        int n1 = readInt("Enter n1: ");
        int n2 = readInt("Enter n2: ");
        int total = n1 + n2;
        println("The total is " + total + ".");
    }
}

This program adds two numbers.
Enter n1: 17
Enter n2:
public class Add2Integers extends ConsoleProgram {
    public void run() {
        println("This program adds two numbers.");
        int n1 = readInt("Enter n1: ");
        int n2 = readInt("Enter n2: ");
        int total = n1 + n2;
        println("The total is " + total + ".");
    }
}
public class Add2Integers extends ConsoleProgram {
    public void run() {
        println("This program adds two numbers.");
        int n1 = readInt("Enter n1: ");
        int n2 = readInt("Enter n2: ");
        int total = n1 + n2;
        println("The total is " + total + ".");
    }
}
public class Add2Integers extends ConsoleProgram {
    public void run() {
        println("This program adds two numbers.");
        int n1 = readInt("Enter n1: ");
        int n2 = readInt("Enter n2: ");
        int total = n1 + n2;
        println("The total is " + total + ".");
    }
}

n1         n2         total
17          25

This program adds two numbers.
Enter n1: 17
Enter n2: 25
public class Add2Integers extends ConsoleProgram {
    public void run() {
        println("This program adds two numbers.");
        int n1 = readInt("Enter n1: ");
        int n2 = readInt("Enter n2: ");
        int total = n1 + n2;
        println("The total is " + total + ".");
    }
}

This program adds two numbers.
Enter n1: 17
Enter n2: 25

17  25  42
public class Add2Integers extends ConsoleProgram {
    
    public void run() {
        println("This program adds two numbers.");
        int n1 = readInt("Enter n1: ");
        int n2 = readInt("Enter n2: ");
        int total = n1 + n2;
        println("The total is " + total + ".");
    }
}

<table>
<thead>
<tr>
<th>n1</th>
<th>n2</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>25</td>
<td>42</td>
</tr>
</tbody>
</table>

This program adds two numbers.
Enter n1: 17
Enter n2: 25
public class Add2Integers extends ConsoleProgram {
    public void run() {
        println("This program adds two numbers.");
        int n1 = readInt("Enter n1: ");
        int n2 = readInt("Enter n2: ");
        int total = n1 + n2;
        println("The total is "+ total + ".");
    }
}
public class Add2Integers extends ConsoleProgram {
    public void run() {
        println("This program adds two numbers.");
        int n1 = readInt("Enter n1: ");
        int n2 = readInt("Enter n2: ");
        int total = n1 + n2;
        println("The total is " + total + ".");
    }
}

<table>
<thead>
<tr>
<th>n1</th>
<th>n2</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>25</td>
<td>42</td>
</tr>
</tbody>
</table>
Plan For Today

• Announcements
• Bye, Karel!
• Console Programs
• Variables
• Expressions
• Practice: Receipt
Variables = Boxes
Variables = Boxes

My computer has space for about 2 billion boxes
int myVariable;
Making a new Variable

```
int myVariable;
```
Variable Types

**int** – an integer number

**double** – a decimal number

**char** – a single character

**boolean** – true or false
How much do I weigh?

double – answer is real number
How many pets do I have?

**int** – answer is an integer
double vs. int

How much vs. how many
• **variable declaration**: Sets aside memory for storing a value.
  – Variables must be declared before they can be used.

• Syntax:

```
type name;
```

```
int zipcode; zipcode
```

```
double myGPA; myGPA
```
Assignment

Existing variable name

myVariable = 2;

value
Assignment

// integer values
int num;
num = 5;

// real values
double fraction;
fraction = 0.2;

// a single letter
char letter;
letter = ‘c’;

// true or false
boolean isLove;
isLove = true;
Assignment

• **assignment**: Stores a value into a variable.
  – The value can be an expression; the variable stores its result.

• Syntax:

```
name = expression;
```

```
int zipcode;
zipcode = 90210;
```

```
double myGPA;
myGPA = 1.0 + 2.25;
```
• A variable can be declared/initialized in one statement.
  – This is probably the most commonly used declaration syntax.

• Syntax:

  \[ \text{type name} = \text{expression}; \]

\[
\begin{align*}
double \ tempF & = 98.6; \\
\text{int} \ x & = (12 / 2) + 3;
\end{align*}
\]
‘=’ Means Assignment

• Assignment uses = , but it is not an algebraic equation.

  = means, "store the value at right in the variable at left"

• The right side expression is evaluated first, and then its result is stored in the variable at left.

• What happens here?

  int x = 3;
  x = x + 2;  // ???
Assignment and types

• A variable can only store a value of its own type.
  
  \[
  \text{int } x = 2.5; \quad \text{// Error: incompatible types}
  \]

• An int value can be stored in a double variable.
  – The value is converted into the equivalent real number.

  \[
  \text{double myGPA} = 4; \quad \text{myGPA} = 4.0
  \]
• A variable can't be used until it is assigned a value.

    ```java
 int x;
 println(x); // Error: x has no value
    ```

• You may not declare the same variable twice.

    ```java
 int x;
 int x; // ERROR: x already exists

 int y = 3;
 int y = 5; // Error: y already exists
    ```
Using Variables

// Asks the user for an integer by
// displaying the given message
// and stores it in the variable 'a'
int a = readInt(message);

// Asks the user for a double by
// displaying the given message and
// stores it in the variable 'b'
double b = readDouble(message);
Using Variables

• Use + to print a string and a variable's value on one line.

```java
double temperature = (95 + 71 + 82.7) / 3.0;
println("The average temp. was " + temperature);

int enrolled = 11 + 17 + 4 + 19 + 14;
println("There are " + enrolled + " students.");
```

• Output:

  The average temp. was 82.9
  There are 65 students.
Using Variables

• Once given a value, a variable can be used in expressions:

```java
int x = 3;
println("x is " + x); // x is 3
println(5 * x - 1); // 5 * 3 - 1
```

• You can assign a value more than once:

```java
int x = 3;
println(x + " here"); // 3 here
```

```
 x = 4 + 7;
 println("now x is " + x); // now x is 11
```
Plan For Today

• Announcements
• Bye, Karel!
• Console Programs
• Variables
• Expressions
• Practice: Receipt
Expressions

• You can combine literals or variables together into expressions using binary operators:

  +  Addition
  −  Subtraction
  *  Multiplication
  /  Division
  %  Remainder
• **precedence**: Order in which operators are evaluated.
  - Generally operators evaluate left-to-right.
    
    1 - 2 - 3 is \((1 - 2) - 3\) which is -4

  - But \(*\) / % have a higher level of precedence than + -
    
    \[1 + 3 \times 4\] is 13

    \[6 + 8 / 2 \times 3\]
    \[6 + 4 \times 3\]
    \[6 + 12\] is 18

  - Parentheses can alter order of evaluation, but spacing does not:
    
    \((1 + 3) \times 4\) is 16
    
    \[1+3 \times 4-2\] is 11
Integer remainder \%

- The % operator computes the remainder from integer division.
  
  \[
  14 \% 4 \quad \text{is} \quad 2 \\
  218 \% 5 \quad \text{is} \quad 3
  \]

  \[
  \begin{array}{c}
  3 \\
  4 \quad 14 \\
  \hline
  12 \\
  2
  \end{array}
  \quad \quad 
  \begin{array}{c}
  43 \\
  5 \quad 218 \\
  \hline
  20 \\
  18 \\
  15 \\
  3
  \end{array}
  
  \]

- Applications of % operator:
  
  - Obtain last digit of a number: \( 230857 \% 10 \) is 7
  - Obtain last 4 digits: \( 658236489 \% 10000 \) is 6489
  - See whether a number is odd: \( 7 \% 2 \) is 1, but \( 42 \% 2 \) is 0
• **string concatenation**: Using + between a string and another value to make a longer string.

  - "hello" + 42 is "hello42"
  - 1 + "abc" + 2 is "1abc2"
  - "abc" + 1 + 2 is "abc12"
  - 1 + 2 + "abc" is "3abc"
  - "abc" + 9 * 3 is "abc27"
  - "1" + 1 is "11"
  - 4 - 1 + "abc" is "3abc"

• Use + to print a string and an expression's value together.

  ```java
 println("Average: " + (95.1 + 71.9) / 2);

 Output: Average: 83.5
  ```
What does this do?

```java
println(1 / 2);
```
What does this do?

```java
println(1 / 2);
0!
```
• When we divide integers, the quotient is also an integer.
  
  \[ \frac{14}{4} \text{ is } 3, \text{ not } 3.5. \]  
  (Java ALWAYS rounds down.)

\[
\begin{array}{cccc}
4 & 3 \\
- 12 & \\
- 2 \\
\hline
14 \\
10 & 4 \\
- 40 & \\
- 5 \\
\hline
27 & 52 \\
10 & \\
- 135 & \\
- 54 & \\
- 21 & \\
\end{array}
\]

• More examples:
  
  – \( \frac{32}{5} \) is 6
  
  – \( \frac{84}{10} \) is 8
  
  – \( \frac{156}{100} \) is 1

  – Dividing by 0 causes an error when your program runs.
Type Interactions

int and int results in an int

double and double results in a double

int and double results in a double

* The general rule is: operations always return the most expressive type
Convert 100° Celsius temperature to its Fahrenheit equivalent:

double c = 100;
double f = 9 / 5 * c + 32;

The computation consists of evaluating the following expression:

The problem arises from the fact that both 9 and 5 are of type int, which means that the result is also an int.
Pitfalls of Integer Division

You can fix this problem by converting the fraction to a double:

double c = 100;
double f = 9.0 / 5 * c + 32;

The computation now looks like this:
Practice

- \(5 + 3 / 2 - 4\) = 2
- \(15 / 2.0 + 6\) = 13.5
- \(1 * 2 + 3 * 5 \mod 4\) = 11
- \"abc\" + 1 + 2 = "abc12"
- \"abc\" + (1 + 2) = "abc3"
Precedence examples

1 * 2 + 3 * 5 % 4

"abc" + 1 + 2

"abc1" + 2

"abc12"
Plan For Today

- Announcements
- Bye, Karel!
- Console Programs
- Variables
- Expressions

- Practice: Receipt
Practice: Receipt Program

- Let’s write a ConsoleProgram that calculates the tax, tip and total bill for us at a restaurant.
- The program should ask the user for the subtotal, and then calculate and print out the tax, tip and total.

```
What was the meal cost? $ 45.50
Tax: $3.64
Tip: $9.1
Total: $58.24
```
public class Receipt extends ConsoleProgram {
    public void run() {
        double subtotal = readDouble("Meal cost? ");
        double tax = subtotal * 0.08;
        double tip = subtotal * 0.20;
        double total = subtotal + tax + tip;

        println("Tax : ");
        println("Tip: ");
        println("Total: ");
    }
}
Recap

• Announcements
• Bye, Karel!
• Console Programs
• Variables
• Expressions
• Practice: Receipt

Next time: Control flow in Java