
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.
Based	on	slides	created	by	Keith	Schwarz,	Mehran	Sahami,	Eric	Roberts,	Stuart	Reges,	and	others.

CS	106A,	Lecture	5
Booleans,	Control	Flow	and	Scope

suggested	reading:
Java	Ch.	3.4-4.6

2

Plan For Today
•Announcements
•Recap:	Java,	Variables	and	Expressions
•Aside:	Shorthand	Operators	+	Constants
•Revisiting	Control	Flow
–If	and	While
–For

3

Plan For Today
•Announcements
•Recap:	Java,	Variables	and	Expressions
•Aside:	Shorthand	Operators	+	Constants
•Revisiting	Control	Flow
–If	and	While
–For

4

Plan For Today
•Announcements
•Recap:	Java,	Variables	and	Expressions
•Aside:	Shorthand	Operators	+	Constants
•Revisiting	Control	Flow
–If	and	While
–For

5

Java

Karel Program Graphics ProgramConsole Program

SuperKarel Program

Program

6

Console Programs
import acm.program.*;

public class Name extends ConsoleProgram {
public void run() {

statements;
}

}

• Unlike	Karel,	many	programs	produce	their	behavior as	text.
• console:	Text	box	into	which	the	behavior is	displayed.

– output: Messages	displayed	by	the	program.
– input: Data	read	by	the	program	that	the	user	types.

7

println
• A	statement	that	prints	a	line	of	output	on	the	console,	and	goes	to	
the	next	line.
– pronounced	"print-linn"

• Two	ways	to	use	println :

• println("text");
• Prints	the	given	message	as	output,	and	goes	to	the	next	line.
• A	message	is	called	a	string;	it	starts/ends	with	a	" quote	character.
• The	quotes	do	not	appear	in	the	output.
• A	string	may	not	contain	a	" character.

• println();
Prints	a	blank	line	of	output.

8

print
public class HelloWorld extends ConsoleProgram {

public void run() {
print("Hello, ");
print("world!");

}
}

Same as println, but does not go to the next line.

9

Expressions
• You	can	combine	literals	or	variables	together	into	expressions
using	binary	operators:

Addition
Subtraction

*
/ Division
% Remainder

+
–

Multiplication

10

Precedence
• precedence:	Order	in	which	operators	are	evaluated.

– Generally	operators	evaluate	left-to-right.
1 - 2 - 3 is		(1 - 2) - 3 which	is		-4

– But	* / % have	a	higher	level	of	precedence	than	+ -
1 + 3 * 4 is	13

6 + 8 / 2 * 3
6 + 4 * 3
6 + 12 is	18

– Parentheses	can	alter	order	of	evaluation,	but	spacing	does	not:
(1 + 3) * 4 is	16
1+3 * 4-2 is	11

11

Type Interactions

int and int results in an int
double and double results in a double

int and double results in a double

* The general rule is: operations always return the most expressive type

String and int results in a String

etc.

12

Integer division
• When	we	divide	integers,	the	quotient	is	also	an	integer.

14 / 4 is		3,	not	3.5 .			(Java	ALWAYS	rounds	down.)

3 4 52
4) 14 10) 45 27) 1425

12 40 135
2 5 75

54
21

• More	examples:
– 32 / 5 is		6
– 84 / 10 is		8
– 156 / 100 is		1

– Dividing	by	0 causes	an	error	when	your	program	runs.

13

Practice

•1	/	2 0 	
•1.0	/	2 0.5
•1	+	2	/	3 1
•"abc"	+	(4	+	2)	 "abc6"
•"abc"	+	4 +	2																					"abc42"

14

Making a new Variable

int myVariable;

type name

15

Variable Types

int – an integer number

double – a decimal number

16

Assignment

myVariable = 2;

Existing variable name value

17

Assignment
• assignment:	Stores	a	value	into	a	variable.

– The	value	can	be	an	expression;	the	variable	stores	its	result.

• Syntax:

name = expression;

int zipcode;
zipcode = 90210;

double myGPA;
myGPA = 1.0 + 2.25;

zipcode 90210

myGPA 3.25

18

Declare / initialize
• A	variable	can	be	declared/initialized	in	one	statement.

– This	is	probably	the	most	commonly	used	declaration	syntax.

• Syntax:

type name = expression;

double tempF = 98.6;

int x = (12 / 2) + 3;
x 9

tempF 98.6

19

Using Variables

// Asks the user for an integer by
// displaying the given message
// and stores it in the variable ’a’
int a = readInt(message);

// Asks the user for a double by
// displaying the given message and
// stores it in the variable ’b’
double b = readDouble(message);

20

Practice: Receipt Program
• We	wrote	a	ConsoleProgram called	Receipt that	calculates	the	tax,	
tip	and	total	bill	for	us	at	a	restaurant.

• The	program	asks	the	user	for	the	subtotal,	and	then	calculate	and	
print	out	the	tax,	tip	and	total.

21

Plan For Today
•Announcements
•Recap:	Variables	and	Expressions
•Aside:	Shorthand	Operators	+	Constants
•Revisiting	Control	Flow
–If	and	While
–For

22

Shorthand Operators
Shorthand Equivalent	longer	version
variable += value; variable = variable + value;
variable -= value; variable = variable - value;
variable *= value; variable = variable * value;
variable /= value; variable = variable / value;
variable %= value; variable = variable % value;

variable++; variable = variable + 1;
variable--; variable = variable – 1;

x += 3; // x = x + 3;
number *= 2; // number = number * 2;
x++; // x = x + 1;

23

Constants
• constant:	A	variable	that	cannot	be	changed	after	it	is	initialized.		
Declared	at	the	top	of	your	class,	outside	of	the	run()	method.		Can	be	
used	anywhere	in	that	class.

• Better	style	– can	easily	change	their	values	in	your	code,	and	they	are	
easier	to	read	in	your	code.

• Syntax:
private static final type name = value;

– name	is	usually	in	ALL_UPPER_CASE

– Examples:
private static final int DAYS_IN_WEEK = 7;
private static final double INTEREST_RATE = 3.5;
private static final int SSN = 658234569;

24

Receipt Program - Before
public class Receipt extends ConsoleProgram {
public void run() {
double subtotal = readDouble(”Meal cost? $”);
double tax = subtotal * 0.08;
double tip = subtotal * 0.20;
double total = subtotal + tax + tip;

println("Tax : $” + tax);
println("Tip: $” + tip);
println(”Total: $" + total);

}
}

25

Receipt Program – After
public class Receipt extends ConsoleProgram {
private static final double TAX_RATE = 0.08;
private static final double TIP_RATE = 0.2;

public void run() {
double subtotal = readDouble(”Meal cost? $”);
double tax = subtotal * TAX_RATE;
double tip = subtotal * TIP_RATE;
double total = subtotal + tax + tip;

println("Tax : $” + tax);
println("Tip: $” + tip);
println(”Total: $" + total);

}
}

26

Plan For Today
•Announcements
•Recap:	Variables	and	Expressions
•Aside:	Shorthand	Operators	+	Constants
•Revisiting	Control	Flow
–If	and	While
–For

27

If/Else in Karel
if (condition) {

statement;
statement;
...

} else {
statement;
statement;
...

}

Runs	the	first	group	of	statements	if	condition is	true;	otherwise,	runs	
the	second	group	of	statements.

28

While Loops in Karel
while (condition) {

statement;
statement;
...

}

Repeats	the	statements	in	the	body	until	condition is	no	longer	true.
Each	time,	Karel	executes	all	statements,	and	then checks	the	condition.

29

Conditions in Karel

while(frontIsClear()) {
body

}

if(beepersPresent()) {
body

}

30

Conditions in Java

while(condition) {
body

}

if(condition) {
body

}

The	condition	should	be	a	“boolean”	which	
is	either	true or	false

31

Booleans

1	<	2

32

Booleans

1	<	2

true

33

Relational Operators

Operator Meaning Example Value
== equals 1 + 1 == 2 true
!= does	not	equal 3.2 != 2.5 true
< less	than 10 < 5 false
> greater	than 10 > 5 true
<= less	than	or	equal	to 126 <= 100 false
>= greater	than	or	equal	to 5.0 >= 5.0 true

* All have equal precedence

34

Relational Operators

Operator Meaning Example Value
== equals 1 + 1 == 2 true
!= does	not	equal 3.2 != 2.5 true
< less	than 10 < 5 false
> greater	than 10 > 5 true
<= less	than	or	equal	to 126 <= 100 false
>= greater	than	or	equal	to 5.0 >= 5.0 true

* All have equal precedence

35

Relational Operators
if (1 < 2) {

println("1 is less than 2!");
}

int num = readInt("Enter a number: ");
if (num == 0) {

println("That number is 0!");
} else {

println("That number is not 0.");
}

36

Practice: Sentinel Loops
• sentinel:	A	value	that	signals	the	end	of	user	input.

– sentinel	loop:	Repeats	until	a	sentinel	value	is	seen.

• Example:	Write	a	program	that	prompts	the	user	for	numbers	until	
the	user	types	-1,	then	output	the	sum	of	the	numbers.
– In	this	case,	-1	is	the	sentinel	value.

Type a number: 10
Type a number: 20
Type a number: 30
Type a number: -1
Sum is 60

37

Practice: Sentinel Loops
// fencepost problem!
// ask for number - post
// add number to sum - fence

int sum = 0;
int num = readInt("Enter a number: ");
while (num != -1) {

sum += num;
num = readInt("Enter a number: ");

}
println("Sum is " + sum);

38

Practice: Sentinel Loops
// Solution #2 (ok, but #1 is better)
// harder to see loop end condition here

int sum = 0;
while (true) {

int num = readInt("Enter a number: ");
if (num == -1) {

break; // immediately exits loop
}
sum += num;

}
println("Sum is " + sum);

39

Compound Expressions

Operator Description Example Result
! not !(2 == 3) true
&& and (2 == 3) && (-1 < 5) false
|| or (2 == 3) || (-1 < 5) true

Cannot "chain" tests as in algebra; use && or || instead

// assume x is 15 // correct version
2 <= x <= 10 2 <= x && x <= 10
true <= 10 true && false
Error! false

In order of precedence:

40

Precedence Madness
Precedence:		arithmetic	>	relational	>	logical

5 * 7 >= 3 + 5 * (7 – 1) && 7 <= 11
5 * 7 >= 3 + 5 * 6 && 7 <= 11
35 >= 3 + 30 && 7 <= 11
35 >= 33 && 7 <= 11
true && true
true

41

Boolean Variables
// Store expressions that evaluate to true/false
boolean x = 1 < 2; // true
boolean y = 5.0 == 4.0; // false

42

Boolean Variables
// Store expressions that evaluate to true/false
boolean x = 1 < 2; // true
boolean y = 5.0 == 4.0; // false

// Directly set to true/false
boolean isFamilyVisiting = true;
boolean isRaining = false;

43

Boolean Variables
// Store expressions that evaluate to true/false
boolean x = 1 < 2; // true
boolean y = 5.0 == 4.0; // false

// Directly set to true/false
boolean isFamilyVisiting = true;
boolean isRaining = false;

// Ask the user a true/false (yes/no) question
boolean playAgain = readBoolean("Play again?”, "y", "n");
if (playAgain) {
...

44

Practice: GuessMyNumber
• Let’s	write	a	program	called	GuessMyNumber that	prompts	the	user	
for	a	number	until	they	guess	our	secret	number.

• If	a	guess	is	incorrect,	the	program	should	provide	a	hint;	
specifically,	whether	the	guess	is	too	high	or	too	low.	

45

Summary: Conditions

while(condition) {
body

}

if(condition) {
body

}

The	condition	should	be	a	boolean which	is	
either	true or	false

46

If/Else If/Else
if (condition1) {

...
} else if (condition2) { // NEW

...
} else {

...
}

Runs	the	first	group	of	statements	if	condition1 is	true;	otherwise,	
runs	the	second	group	of	statements	if	condition2 is	true;	otherwise,	
runs	the	third	group	of	statements.

You	can	have	multiple	else	if	clauses	together.

47

If/Else If/Else
int num = readInt("Enter a number: ");
if (num > 0) {

println("Your number is positive");
} else if (num < 0) {

println("Your number is negative");
} else {

println("Your number is 0");
}

48

Plan For Today
•Announcements
•Recap:	Variables	and	Expressions
•Aside:	Shorthand	Operators	+	Constants
•Revisiting	Control	Flow
–If	and	While
–For

49

For Loops in Karel
for (int i = 0; i < max; i++) {

statement;
statement;
...

}

Repeats	the	statements	in	the	body	max times.

50

For Loops in Java

for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

Repeats the loop
if this condition

passes

51

For Loops in Java

for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loop Redux

52

For Loops in Java

for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loop Redux

i 0

53

for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 0

54

for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 0

I love CS 106A!

55

for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 0

I love CS 106A!

56

for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 1

I love CS 106A!

57

for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 1

I love CS 106A!

58

for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 1

I love CS 106A!

I love CS 106A!

59

for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 2

I love CS 106A!

I love CS 106A!

60

for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 2

I love CS 106A!

I love CS 106A!

61

for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 2

I love CS 106A!

I love CS 106A!

I love CS 106A!

62

for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 3

I love CS 106A!

I love CS 106A!

I love CS 106A!

63

for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 3

I love CS 106A!

I love CS 106A!

I love CS 106A!

64

for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

I love CS 106A!

I love CS 106A!

I love CS 106A!

65

for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

I love CS 106A!

I love CS 106A!

I love CS 106A!

66

Using the For Loop Variable

// prints the first 100 even numbers
for(int i = 0; i < 100; i++) {

println(i * 2);
}

67

Using the For Loop Variable
// Launch countdown
for(int i = 10; i >= 1; i--) {

println(i * 2);
}
println("Blast off!");

10
9
8
…
Blast off!

Output:

68

Using the For Loop Variable

// Adds up the first 100 numbers
int sum = 0;
for(int i = 0; i < 100; i++) {

sum += i;
}
println("The sum is " + sum);

69

Recap
•Announcements
•Recap:	Variables	and	Expressions
•Aside:	Shorthand	Operators	+	Constants
•Revisiting	Control	Flow
–If	and	While
–For

Next	time:	More	control	flow,	methods	in	Java

