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Java

Karel Program Graphics ProgramConsole Program

SuperKarel Program

Program
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Console Programs
import acm.program.*;

public class Name extends ConsoleProgram {
public void run() {

statements;
}

}

• Unlike	Karel,	many	programs	produce	their	behavior as	text.
• console:	Text	box	into	which	the	behavior is	displayed.

– output: Messages	displayed	by	the	program.
– input: Data	read	by	the	program	that	the	user	types.
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println
• A	statement	that	prints	a	line	of	output	on	the	console,	and	goes	to	
the	next	line.
– pronounced	"print-linn"

• Two	ways	to	use	println :

• println("text");
• Prints	the	given	message	as	output,	and	goes	to	the	next	line.
• A	message	is	called	a	string;	it	starts/ends	with	a	" quote	character.
• The	quotes	do	not	appear	in	the	output.
• A	string	may	not	contain	a	" character.

• println();
Prints	a	blank	line	of	output.
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print
public class HelloWorld extends ConsoleProgram {

public void run() {
print("Hello, ");
print("world!");

}
}

Same as println, but does not go to the next line.
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Expressions
• You	can	combine	literals	or	variables	together	into	expressions
using	binary	operators:

Addition
Subtraction

*
/ Division
% Remainder

+
–

Multiplication
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Precedence
• precedence:	Order	in	which	operators	are	evaluated.

– Generally	operators	evaluate	left-to-right.
1 - 2 - 3 is		(1 - 2) - 3 which	is		-4

– But	* / % have	a	higher	level	of	precedence	than	+ -
1 + 3 * 4 is	13

6 + 8 / 2 * 3
6 +   4   * 3
6 +     12 is	18

– Parentheses	can	alter	order	of	evaluation,	but	spacing	does	not:
(1 + 3) * 4 is	16
1+3 * 4-2 is	11
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Type Interactions

int and int results in an  int
double and double results in a double

int and double results in a double

* The general rule is: operations always return the most expressive type

String and int results in a String

etc.
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Integer division
• When	we	divide	integers,	the	quotient	is	also	an	integer.

14 / 4 is		3,	not	3.5 .			(Java	ALWAYS	rounds	down.)

3 4 52
4 ) 14           10 ) 45               27 ) 1425

12 40 135
2                 5                      75

54
21

• More	examples:
– 32 / 5 is		6
– 84 / 10 is		8
– 156 / 100 is		1

– Dividing	by	0 causes	an	error	when	your	program	runs.
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Practice

•1	/	2 0 	
•1.0	/	2 0.5
•1	+	2	/	3 1
•"abc"	+	(4	+	2)	 "abc6"
•"abc"	+	4 +	2																					"abc42"
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Making a new Variable

int myVariable;

type name
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Variable Types

int – an integer number

double – a decimal number



16

Assignment

myVariable = 2;

Existing variable name value
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Assignment
• assignment:	Stores	a	value	into	a	variable.

– The	value	can	be	an	expression;	the	variable	stores	its	result.

• Syntax:

name = expression;

int zipcode;
zipcode = 90210;

double myGPA;
myGPA = 1.0 + 2.25;

zipcode 90210

myGPA 3.25
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Declare / initialize
• A	variable	can	be	declared/initialized	in	one	statement.

– This	is	probably	the	most	commonly	used	declaration	syntax.

• Syntax:

type name = expression;

double tempF = 98.6;

int x = (12 / 2) + 3;
x 9

tempF 98.6
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Using Variables

// Asks the user for an integer by
// displaying the given message
// and stores it in the variable ’a’
int a = readInt(message);

// Asks the user for a double by
// displaying the given message and
// stores it in the variable ’b’
double b = readDouble(message);
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Practice: Receipt Program
• We	wrote	a	ConsoleProgram called	Receipt that	calculates	the	tax,	
tip	and	total	bill	for	us	at	a	restaurant.

• The	program	asks	the	user	for	the	subtotal,	and	then	calculate	and	
print	out	the	tax,	tip	and	total.
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Shorthand Operators
Shorthand Equivalent	longer	version
variable += value; variable = variable + value;
variable -= value; variable = variable - value;
variable *= value; variable = variable * value;
variable /= value; variable = variable / value;
variable %= value; variable = variable % value;

variable++; variable = variable + 1;
variable--; variable = variable – 1;

x += 3; // x = x + 3;
number *= 2; // number = number * 2;
x++; // x = x + 1;
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Constants
• constant:	A	variable	that	cannot	be	changed	after	it	is	initialized.		
Declared	at	the	top	of	your	class,	outside	of	the	run()	method.		Can	be	
used	anywhere	in	that	class.

• Better	style	– can	easily	change	their	values	in	your	code,	and	they	are	
easier	to	read	in	your	code.

• Syntax:
private static final type name = value;

– name	is	usually	in	ALL_UPPER_CASE

– Examples:
private static final int DAYS_IN_WEEK = 7;
private static final double INTEREST_RATE = 3.5;
private static final int SSN = 658234569;
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Receipt Program - Before
public class Receipt extends ConsoleProgram {
public void run() {
double subtotal = readDouble(”Meal cost? $”);
double tax = subtotal * 0.08;
double tip = subtotal * 0.20;
double total = subtotal + tax + tip;

println("Tax : $” + tax);
println("Tip: $” + tip);
println(”Total: $" + total);

}
}
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Receipt Program – After
public class Receipt extends ConsoleProgram {
private static final double TAX_RATE = 0.08;
private static final double TIP_RATE = 0.2;

public void run() {
double subtotal = readDouble(”Meal cost? $”);
double tax = subtotal * TAX_RATE;
double tip = subtotal * TIP_RATE;
double total = subtotal + tax + tip;

println("Tax : $” + tax);
println("Tip: $” + tip);
println(”Total: $" + total);

}
}
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If/Else in Karel
if (condition) {

statement;
statement;
...

} else {
statement;
statement;
...

}

Runs	the	first	group	of	statements	if	condition is	true;	otherwise,	runs	
the	second	group	of	statements.
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While Loops in Karel
while (condition) {

statement;
statement;
...

}

Repeats	the	statements	in	the	body	until	condition is	no	longer	true.
Each	time,	Karel	executes	all	statements,	and	then checks	the	condition.
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Conditions in Karel

while(frontIsClear()) {
body

}

if(beepersPresent()) {
body

}
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Conditions in Java

while(condition) {
body

}

if(condition) {
body

}

The	condition	should	be	a	“boolean”	which	
is	either	true or	false
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Booleans

1	<	2
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Booleans

1	<	2

true
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Relational Operators

Operator Meaning Example Value
== equals 1 + 1 == 2 true
!= does	not	equal 3.2 != 2.5 true
< less	than 10 < 5 false
> greater	than 10 > 5 true
<= less	than	or	equal	to 126 <= 100 false
>= greater	than	or	equal	to 5.0 >= 5.0 true

* All have equal precedence
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Relational Operators
if (1 < 2) {

println("1 is less than 2!");
}

int num = readInt("Enter a number: ");
if (num == 0) {

println("That number is 0!");
} else {

println("That number is not 0.");
}
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Practice: Sentinel Loops
• sentinel:	A	value	that	signals	the	end	of	user	input.

– sentinel	loop:	Repeats	until	a	sentinel	value	is	seen.

• Example:	Write	a	program	that	prompts	the	user	for	numbers	until	
the	user	types	-1,	then	output	the	sum	of	the	numbers.
– In	this	case,	-1	is	the	sentinel	value.

Type a number: 10
Type a number: 20
Type a number: 30
Type a number: -1
Sum is 60
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Practice: Sentinel Loops
// fencepost problem!
// ask for number - post
// add number to sum - fence

int sum = 0;
int num = readInt("Enter a number: ");
while (num != -1) {

sum += num;
num = readInt("Enter a number: ");

}
println("Sum is " + sum);



38

Practice: Sentinel Loops
// Solution #2 (ok, but #1 is better)
// harder to see loop end condition here

int sum = 0;
while (true) {

int num = readInt("Enter a number: ");
if (num == -1) {

break; // immediately exits loop
}
sum += num;

}
println("Sum is " + sum);
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Compound Expressions

Operator Description Example Result
! not !(2 == 3) true
&& and (2 == 3) && (-1 < 5) false
|| or (2 == 3) || (-1 < 5) true

Cannot "chain" tests as in algebra; use && or || instead

// assume x is 15 // correct version
2 <= x <= 10 2 <= x && x <= 10
true   <= 10 true   && false
Error! false

In order of precedence:
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Precedence Madness
Precedence:		arithmetic	>	relational	>	logical

5 * 7 >= 3 + 5 * (7 – 1) && 7 <= 11
5 * 7 >= 3 + 5 * 6 && 7 <= 11
35    >= 3 + 30 && 7 <= 11
35    >= 33 && 7 <= 11
true && true
true
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Boolean Variables
// Store expressions that evaluate to true/false
boolean x = 1 < 2; // true
boolean y = 5.0 == 4.0; // false
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Boolean Variables
// Store expressions that evaluate to true/false
boolean x = 1 < 2; // true
boolean y = 5.0 == 4.0; // false

// Directly set to true/false
boolean isFamilyVisiting = true;
boolean isRaining = false;
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Boolean Variables
// Store expressions that evaluate to true/false
boolean x = 1 < 2; // true
boolean y = 5.0 == 4.0; // false

// Directly set to true/false
boolean isFamilyVisiting = true;
boolean isRaining = false;

// Ask the user a true/false (yes/no) question
boolean playAgain = readBoolean("Play again?”, "y", "n");
if (playAgain) {
...
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Practice: GuessMyNumber
• Let’s	write	a	program	called	GuessMyNumber that	prompts	the	user	
for	a	number	until	they	guess	our	secret	number.

• If	a	guess	is	incorrect,	the	program	should	provide	a	hint;	
specifically,	whether	the	guess	is	too	high	or	too	low.	
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Summary: Conditions

while(condition) {
body

}

if(condition) {
body

}

The	condition	should	be	a	boolean which	is	
either	true or	false
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If/Else If/Else
if (condition1) {

...
} else if (condition2) { // NEW

...
} else {

...
}

Runs	the	first	group	of	statements	if	condition1 is	true;	otherwise,	
runs	the	second	group	of	statements	if	condition2 is	true;	otherwise,	
runs	the	third	group	of	statements.

You	can	have	multiple	else	if	clauses	together.
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If/Else If/Else
int num = readInt("Enter a number: ");
if (num > 0) {

println("Your number is positive");
} else if (num < 0) {

println("Your number is negative");
} else {

println("Your number is 0");
}
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For Loops in Karel
for (int i = 0; i < max; i++) {

statement;
statement;
...

}

Repeats	the	statements	in	the	body	max times.
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For Loops in Java

for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

Repeats the loop 
if this condition 

passes
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for (int i = 0; i < 3; i++) {
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for (int i = 0; i < 3; i++) {
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for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 3

I love CS 106A!

I love CS 106A!

I love CS 106A!
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for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 3

I love CS 106A!

I love CS 106A!

I love CS 106A!
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for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

I love CS 106A!

I love CS 106A!

I love CS 106A!
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for (int i = 0; i < 3; i++) {
println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

I love CS 106A!

I love CS 106A!

I love CS 106A!
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Using the For Loop Variable

// prints the first 100 even numbers
for(int i = 0; i < 100; i++) {

println(i * 2);
}



67

Using the For Loop Variable
// Launch countdown
for(int i = 10; i >= 1; i--) {

println(i * 2);
}
println("Blast off!");

10
9
8
…
Blast off!

Output:
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Using the For Loop Variable

// Adds up the first 100 numbers
int sum = 0;
for(int i = 0; i < 100; i++) {

sum += i;
}
println("The sum is " + sum);
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Recap
•Announcements
•Recap:	Variables	and	Expressions
•Aside:	Shorthand	Operators	+	Constants
•Revisiting	Control	Flow
–If	and	While
–For

Next	time:	More	control	flow,	methods	in	Java


