
Nick Troccoli Section #4
CS 106A July 17, 2017

Section Handout #4: Graphics
Portions of this handout by Marty Stepp and Chris Piech

The programs below may or may not require use of fields (private instance variables).
Use a field only when necessary!

1. Random Circles

Write a GraphicsProgram that draws a set of ten circles with different sizes,
positions, and colors. Each circle should have a randomly chosen color, a randomly
chosen radius between 5 and 50 pixels, and a randomly chosen position on the
canvas. The entire circle must fit inside the canvas without extending past the edge.
On some runs of this program you might not see ten circles. Why?

 For extra practice, try modifying your program to draw a new circle (with a random
size and color) each time the user clicks the mouse. Each circle should be centered at
the point where the user clicked.

 – 2 –

2. Drawing Lines

Write a GraphicsProgram that allows the user to draw lines on the canvas. Pressing
the mouse button sets the starting point for the line. Dragging the mouse moves the
other endpoint around as the drag proceeds. Releasing the mouse fixes the line in its
current position and gets ready to start a new line.

For example, suppose that you press the mouse button at the bottom-center of the
screen and then drag it upward to the right. Then, you would get the vertical line that
is included in the picture above. (The other two horizontal lines would be added with
additional click-and-drags). Because the original point and the mouse position appear
to be joined by some elastic string, this technique is called rubber-banding.

3. Sunset

Write a GraphicsProgram that simulates a sunset. Your program should start off by
drawing the sun centered in the window over a green horizon, as shown above. Your
program should then animate the sun sinking beneath the horizon. If you'd like, you
could change the color of the sun, the sky, or the horizon as the sun sets.

 – 3 –

4. Robot Face

Write a GraphicsProgram that draws a centered robot-looking face as in the
screenshot above. This face consists of four parts – a head, two eyes, and a mouth –
which are arranged as follows:

• The head. The head is a gray rectangle with dimensions given by the
constants HEAD_WIDTH and HEAD_HEIGHT.

• The eyes. The eyes are circles whose radii in pixels are given by the constant
EYE_RADIUS. The centers of the eyes should be set horizontally a quarter of
the width of the head in from either edge, and one quarter of the distance
down from the top of the head. The eyes are yellow.

• The mouth. The mouth should be horizontally centered with respect to the
head and one quarter of the distance up from the bottom of the head. The
dimensions of the mouth are given by the constants MOUTH_WIDTH and
MOUTH_HEIGHT. The mouth is white.

 – 4 –

5. Tracing method execution
For the program below, show what the graphics canvas looks like when it runs.

/*
 * This program adds a collage of non-overlapping images to the screen.
 */

import acm.program.*;
import acm.graphics.*;

public class Collage extends GraphicsProgram {

 private GImage tree = null;

 public void run() {
 GImage star = new GImage(“star.png”);
 GImage smiley = new GImage(“smiley.png”);
 tree = new GImage(“stanfordTree.png”);
 add(tree, 0, 0);
 tryToAdd(star);
 tryToAdd(smiley);
 GImage otherImage = star;
 tryToAdd(otherImage);
 }

 private void tryToAdd(GImage image) {
 if (addImage(image, 0, 0)) {
 return;
 } else if (addImage(image, 200, 20)) {
 return;
 } else {
 addImage(image, 200, 300);
 }
 }

 private boolean addImage(GImage image, double x, double y) {
 GObject obj = getElementAt(x, y);
 if (obj == image) {
 return true;
 } else if (obj != null) {
 return false;
 } else {
 add(image, x, y);
 return true;
 }
 }
}

