
Hangman YEAH Hours
Tuesday, May 8, 6:00 – 7:00PM
Andrew Tierno and Milan Mossé
(atierno@stanford.edu; mmosse19@stanford.edu)
Slides by Julia Daniel & Ben Barnett

Overview

▶ Review Lecture Material
▶ Characters
▶ Strings

▶ Assignment Overview
▶ Milestones/breakdown of tasks
▶ General suggestions and reminders

▶ Q&A

Lecture Review

Characters

char ch = ’a’;

ch = Character.toUpperCase(ch); // need to store return value

String str = “” + ch; // converting a char to a string

Useful methods in the Character Class

Comparing Characters

▶ Write a program that…
▶ …prompts the user for 2 words

▶ …prints out “The first letters match!” if the first letters of the two words are the
same and “The first letters differ” if the first letters are not the same

▶ Case-insensitive (so “CS106A and “cs106a” should match)

Comparing Characters - Solution

String first = readLine(“Enter a word: “);

String second = readLine(“Enter a word: “);

Comparing Characters - Solution

String first = readLine(“Enter a word: “);

String second = readLine(“Enter a word: “);

if (Character.toLowerCase(first.charAt(0)) ==
Character.toLowerCase(second.charAt(0))) {

println(“The first letters match!”);

} else {

println(“The first letters differ.”);

}

Comparing Characters - Solution

String first = readLine(“Enter a word: “);

String second = readLine(“Enter a word: “);

if (Character.toLowerCase(first.charAt(0)) ==
Character.toLowerCase(second.charAt(0))) {

println(“The first letters match!”);

} else {

println(“The first letters differ.”);

}

What if the user enters an empty string?

Comparing Characters - Solution

String first = readLine(“Enter a word: “);

String second = readLine(“Enter a word: “);

if (first.length() == 0 || second.length() == 0) {

println(“Empty string”);

} else if (Character.toLowerCase(first.charAt(0)) ==
Character.toLowerCase(second.charAt(0))) {

println(“The first letters match!”);

} else {

println(“The first letters differ.”);

}

Strings

String s = “Hi mom”; // ordered characters

// need to store value of s.toUpperCase()

s = s.toUpperCase();

println(s); // prints “HI MOM”

Useful methods in the String Class

Looping over a String

Comparing Strings

String s1 = “racecar”;

String s2 = reverseString(s1);

// How do we check equality?

Comparing Strings

String s1 = “racecar”;

String s2 = reverseString(s1);

// How do we check equality?

if (s1.equals(s2)) { if (s2.equals(s1)) {

… OR …

} }

Comparing Strings

String s1 = “racecar”;

String s2 = reverseString(s1);

// How do we check equality?

DON’T DO THIS

if (s1 == s2) {

…

}

Searching Strings

▶ You can use the indexOf method to search a string:

int index = str.indexOf(pattern);

▶ indexOf returns the start index of the first occurrence of the pattern if the
pattern exists in the string

▶ Otherwise, if returns -1

int index = “hello”.indexOf(“el”); // 1

int notFound = “cs106a”.indexOf(“b”); // -1

Building Strings

▶ 1. Use substrings – smaller pieces of strings

▶ OR

▶ 2. Make new string and build over time

1. Substrings

▶ To get all of the characters in the range [start, stop), use

str.substring(start, stop);

▶ To get all of the characters from some specified point forward, use

str.substring(start);

2. Building a New String

▶ Start with an empty string and build up a new string

▶ Iterate through the old string

▶ Use Character methods at each position to decide what to concatenate
to the new string

▶ See this week’s section handout for examples

String Summary: Strings are...

▶ objects that have methods (length(), charAt(), equals(), indexOf()...)

▶ zero-indexed lists of chars

▶ immutable!
▶ but you can concatenate them, get substrings from them, search them, compare them…

▶ ...using methods and the canonical new string + reassignment to old variable pattern.

Scanners

▶ Use a Scanner to read from a file

▶ Remember to use a try/catch

▶ Remember to close your scanner when you’re done! (like housekeeping)

try {
Scanner input = new Scanner(new File(“filename.txt”));
while (input.hasNextLine()) {

String line = input.nextLine();
// do something with line

}
input.close();

} catch (IOException e) {
// put some descriptive error message here

}

Scanners

Assignment 4

Assignment 4 - Hangman

▶ Due Monday, May 14 at 11:00am

▶ String processing

▶ Pair assignment (optional)
▶ Notes on pair programing (read these)

▶ We suggest approaching this assignment in stages

https://web.stanford.edu/class/cs106a/assn/pair.html

Task 0: Sandcastle

▶ Start with this to warm up!

PART 1 PART 2

PART 3

Task 1: Console Game

▶ Display a “hint” (initially “- - - - - - - - - -”)

▶ Get guesses from the user

▶ Figure out if a guess is correct (letter in the secret word) or incorrect (not in secret word)

▶ Update hint

▶ Keep track of the number of guesses the user has left

▶ Determine when the game has ended (no guesses left or they guessed the word)

▶ ...Repeat

Game Flow

String secretWord

String wordState

char guess

String newWordState

P R O G R A M M E R

_ _ _ _ _ _ _ _ _ _

r

- R - - R - - - - R

Task 1: Console Game - Tips

▶ Keep track of the user’s partially-guessed word (dashes and letters)

▶ Your program should be case-insensitive (R and r should be the same guess)
▶ Guessed letters string should be all upper-case, even when a guess is lower case

▶ You will have some fencepost issues – look at lecture slides for techniques to
deal with this

Task 1: Console Game - Error Checking

▶ You’ll need to prompt the user to enter guesses

▶ The user may enter a letter in upper or lower case (hint: the secret words
are all upper-case)

▶ If the user guesses anything other than a single letter, print out an error
message and reprompt

▶ If the user enters the same correct letter more than once, do nothing.

▶ If the user enters the same incorrect letter more than once, it’s incorrect
again.

Task 1: Console Game – Sample Output

Follow the screenshots to know what
your output should look like!

Task 2: Hangman Graphics

Task 2: Hangman Graphics

▶ Add the canvas instance variable to the window using init()
▶ This is a console (not graphics!) program—call graphics methods on the canvas object.

i.e.: canvas.add(object, x, y);

▶ Add the main objects (background, Karel, and parachute) to the canvas

▶ Add, and remove one-by-one, the parachute cords
▶ Use the exact order specified in the handout: alternating from outside in, start on right

▶ Add current word state and incorrectly guessed letters to the canvas

▶ Flip Karel if user loses game

Task 2: Add main graphics

▶ All images are in files included in the project

▶ Sizes and y-locations are constants

▶ Make sure objects are centered!

Task 2: Add & remove parachute cords

7 guesses left 3 guesses left game over

Task 2: Add & remove parachute cords

▶ N_GUESSES (default 7) lines

▶ Tops of lines are evenly spaced along the bottom
of the parachute

▶ Bottoms of lines are all at centerpoint of top edge
of Karel

▶ Removed one-by-one from outside to center,
alternating starting on the right

▶ There are multiple reasonable ways to do this, and
this part will be easier to think about once you’ve
added main graphics

Task 2: Add labels for game state

▶ Use GLabels to represent current
state of guessed word and
incorrectly guessed letters

▶ Update these when the game
state changes due to user input

▶ Center horizontally
▶ Size, y-location, font are constants

Task 2: Ending graphics

▶ Use karelFlipped.png if Karel runs
out of cords

▶ Plenty of possibilities for extensions
here!

Task 3: Random Word from File

private String getRandomWord()

▶ Before starting this milestone, just use the provided “stub” implementation to get
one of 10 random words.

▶ 1. Open the data file HangmanLexicon.txt using a Scanner (at start of
program)

▶ 2. Read the lines from the file into an ArrayList (at start of program)
▶ 3. Reimplement getRandomWord so it uses this ArrayList as the source of the

words.

There is also a ShorterLexicon.txt file you can use for testing/debugging.

Extensions

▶ Extensions are optional, and you will get a small amount of extra credit if you do them
▶ Focus on the main program first, though – extensions won’t make up for a broken Hangman!

▶ If you do extensions, submit two different .java files for the assignment
▶ The basic Hangman.java that meets all of the assignment requirements

▶ HangmanExtra.java that has your extensions. In Eclipse, right click on Hangman.java, click
Copy, then ctrl+v (paste). In the Name Conflict window that appears, write HangmanExtra
and click OK, then make extension edits in the new file. Both files will submit together.

▶ In HangmanExtra.java, be sure to comment all of your extensions in the header
comment so your SL knows what to look for.

▶ See the spec for ideas or come up with your own!

Final Tips

▶ Make sure your program compiles without any errors or warnings

▶ Follow the spec carefully and make sure your output matches the spec and
expected output

▶ Continuous decomposition

▶ Make sure you properly handle all user input, including faulty/unexpected input
▶ Try to break your program :)

▶ Use instance variables only where absolutely necessary

▶ Don’t have a method that calls itself

▶ Once you’ve put some time into understanding the relevant bug or concept, come
to the LaIR with any remaining questions

▶ Incorporate IG feedback!

fin.

