Hangman YEAH HOUrS

Tuesday, May 8, 6:00 — 7:00PM

Andrew Tierno and Milan Mossé
(atierno@stanford.edu; mmosse19@stanford.edu)
Slides by Julia Daniel & Ben Barnett

Overview

Review Lecture Material
Characters
Strings

Assignment Overview

Milestones/breakdown of tasks
General suggestions and reminders

Q&A

Lecture Review

Characters

char ch = "a’;
ch = Character.toUpperCase (ch) ; // need to store return value

String str = “” + ch; // converting a char to a string

Useful methods Iin the Character Class

static boolean isDigit(char ch)
Determines if the specified character is a digit.

static boolean isLetter(char ch)
Determines if the specified character is a letter.

static boolean isLetterOrDigit(char ch)
Determines if the specified character is a letter or a digit.

static boolean isLowerCase (char ch)
Determines if the specified character is a lowercase letter.

static boolean isUpperCase (char ch)
Determines if the specified character is an uppercase letter.

static boolean isWhitespace (char ch)
Determines if the specified character is whitespace (spaces and tabs).

static char tolLowerCase (char ch)
Converts ch to its lowercase equivalent, if any. If not, ch is returned unchanged.

static char toUpperCase (char ch)
Converts ch to its uppercase equivalent, if any. If not, ch is returned unchanged.

Using portions of slides by Eric Roberts

Comparing Characters

Write a program that...
...prompts the user for 2 words

...prints out “The first letters match!” if the first letters of the two words are the
same and “The first letters differ” if the first letters are not the same

Case-insensitive (so “CST06A and *cs106a” should match)

Comparing Characters - Solution

String first = readLine (“Enter a word: “);

String second = readLine (“Enter a word: “);

Comparing Characters - Solution

String first = readLine (“Enter a word: “);

String second = readlLine (“Enter a word: “);

1f (Character.tolLowerCase (first.charAt(0)) ==
Character.toLowerCase (second.charAt (0))) {

println(“"The first letters match!”);
} else {
println(“"The first letters differ.”);

Comparing Characters - Solution

String first = readLine (“Enter a word: “);

String second = readlLine (“Enter a word: “);

1f (Character.tolLowerCase (first.charAt(0)) ==
Character.toLowerCase (second.charAt (0))) {

println(“"The first letters match!”);
} else {

println(“"The first letters differ.”);

What if the user enters an empty stringe

Comparing Characters - Solution

String first = readLine(“Enter a word: “);
String second = readLine (“Enter a word: “);
if (first.length() == 0 || second.length() == 0) {

println (“Empty string”) ;

} else if (Character.toLowerCase (first.charAt(0)) ==
Character.toLowerCase (second.charAt (0))) {

println(“The first letters match!”);
} else {
println(“The first letters differ.”);

Strings

String s = “Hi mom”; // ordered characters
‘ ‘ ‘ m ‘ | m ‘ (length 6)
0 2 3 4 5

// need to store value of s.toUpperCase()

s = s.toUpperCase() ;
println(s) ; // prints “HI MOM”

Useful methods in the String Class

int length()
Returns the length of the string

char charAt(int index)
Returns the character at the specified index. Note: Strings indexed starting at 0.

String substring(int pl, int p2)
Returns the substring beginning at p1 and extending up to but not including p2

String substring(int pl)
Returns substring beginning at p1l and extending through end of string.

boolean equals(String s2)
Returns true if string s2 is equal to the receiver string. This is case sensitive.

int compareTo (String s2)
Returns integer whose sign indicates how strings compare in lexicographic order

int indexOf (char ch) or int indexOf (String s)
Returns index of first occurrence of the character or the string, or -1 if not found

String toLowerCase() or String toUpperCase ()
Returns a lowercase or uppercase version of the receiver string |

Looping over a Siring

Canonical “loop over the characters in a string” loop:

for (int 1 = 0; 1 < string.length(); i++) {
char ch = string.charAt(i);
/* .. process ch .. */

Comparing Strings

String sl = “racecar”;

String s2 = reverseString(sl) ;

// How do we check equality?

Comparing Strings

String sl = “racecar”;

String s2 = reverseString(sl) ;

// How do we check equality?

.equals (s2)) { if (s2.equals(sl)) {

String

String

// How

DON'T

sl = “racecar”;
s2 = reverseString(sl) ;
do we check equality?

DO THIS

Searching Strings

You can use the index0f method to search a string:
int index = str.indexOf (pattern) ;

indexOf returns the start index of the first occurrence of the pattern if the
pattern exists in the string

Otherwise, if returns -1

int index = “hello”.indexOf (“el”) ; // 1

int notFound = “csl06a”.indexOf (“b”) ; // -1

Bullding Strings

1. Use substrings — smaller pieces of strings
OR

2. Make new string and build over time

1. Substrings

To get all of the characters in the range [start, stop), use
str.substring(start, stop);
To get all of the characters from some specified point forward, use

str.substring(start) ;

1 2 3 4 D 6 7 8 9
str.substring (0, 2); str.substring(6) ;

2. Building a New String

Start with an empty string and build up a new string
Iterate through the old string

Use Character methods at each position to decide what to concatenate
to the new string

See this week’s section handout for examples

String Summary: Strngs are...

objects that have methods (length (), charAt (), equals(), indexOf()...)

zero-indexed lists of chars

immutable!
but you can concatenate them, get substrings from them, search them, compare them...

...using methods and the canonical new string + reassignment to old variable pattern.

Scanners

Use a Scanner to read from a file
Remember to use a try/catch

Remember to close your scanner when you're done! (like housekeeping)

try {
Scanner input = new Scanner (new File(“filename.txt”)) ;
while (input.hasNextLine()) {

String line = input.nextLine() ;
// do something with line
}
input.close() ;
} catch (IOException e)
// put some descriptive error message here
}

Scanners

Method Description
sc.nextLine() reads and returns a one-line String from the file
sc.next() reads and returns a one-word String from the file
sc.nextInt() reads and returns an int from the file
sc.nextDouble() reads and returns a double from the file
sc.hasNextLine() returns true if there are any more lines
sc.hasNext() returns true if there are any more tokens
sc.hasNextInt() returns true if there is a next token and it's an int
sc.hasNextDouble() |returns true if there is a next token and it's a double
sc.close(); should be called when done reading the file

Assignment 4

Assignment 4 - Hangman

Due Monday, May 14 at 11:00am
String processing
Pair assignment (optional)

(read these)

We suggest approaching this assignment in stages

https://web.stanford.edu/class/cs106a/assn/pair.html

Task O: Sandcastle

Start with this to warm up!

Sandcastle: Alternate Caps

Write a method altCaps(String input) which converts a string to alternating
capital letters, meaning you alternate between uppercase and lowercase. This style of
typing was prevalent on the internet in the late 90s. For example:

altCaps("aaaaaa") returns "aAaAaA"
altCaps("hello world") returns "hElLo WoR1D"

Note that characters that are not letters are not changed and do not affect the
alternating sequence of uppercase and lowercase letters.

. \ / .

Hangman

Welcome to Hangman

Your word looks like this: ————-
You have 7 guesses left

Your guess: a

There are no A's in the word.
Your word looks like this: ————=
You have 6 guesses left

Your guess: e

There are no E's in the word.
Your word looks like this: ———
You have 5 guesses left

Your guess: i

There are no I's in the word.
Your word looks like this: ————-
You have 4 guesses left

Your guess: o

There are no 0's in the word.
Your word looks like this: ————-
You have 3 guesses left

Your guess: u

That guess is correct.

Your word looks like this: -U—
You have 3 guesses left

Your guess: z

That guess is correct.

Your word looks like this: -UZZ-
You have 3 guesses left

Your guess:

=UZ2-

AEIOQ

Hangman

elcome to Hangman
our word looks like this: ———
ou have 7 guesses left

our guess: a

here are no A's in the word.
our word looks like this: —-———-
ou have 6 guesses left

our guess: e

here are no E's in the word.
our word looks like this:
ou have 5 guesses left
our guess: i

here are no I's in the word.
our word looks like this:
ou have 4 guesses left

zg:eggf':s:\oows RA\RT 1 “‘ o

our word looks like this:
,xoun_have 3 guesses left

Display a “hint” (initially “---------- ")

Get guesses from the user

Figure out if a guess is correct (letter in the secret word) or incorrect (not in secret word)
Update hint

Keep track of the number of guesses the user has left

Determine when the game has ended (no guesses left or they guessed the word)

...Repeat

Game Flow

String secretWord PROGRAMMEHR
String wordState — - - - - - - - - -

char guess

String newWordState -R--R----R

Task 1: Console Game - Tips

Keep track of the user’s partially-guessed word (dashes and letters)
Your program should be case-insensitive (R and r should be the same guess)
Guessed letters string should be all upper-case, even when a guess is lower case

You will have some fencepost issues — look at lecture slides for techniques to
deal with this

Task 1: Console Game - Efror Checking

You'll need to prompt the user to enter guesses

The user may enter a letter in upper or lower case (hint: the secret words
are all upper-case)

If the user guesses anything other than a single letter, print out an error
message and reprompt

If the user enters the same correct letter more than once, do nothing.

If the user enters the same incorrect letter more than once, it's incorrect
again.

Task 1: Console Game - Sample Output

Hangman

|Welcome to Hangman

Your word now looks like this: —-————
You have 7 guesses left.

Your guess: a

There are no A's in the word.

|Your word now looks like this: —————
You have 6 guesses left.

Your guess: e

There are no E's in the word.

Your word now looks like this: ————
You have 5 guesses left.

Your guess: i

There are no I's in the word.

|Your word now looks like this: —————
You have 4 guesses left.

Your guess: o

There are no 0's in the word.

Your word now looks like this: ——— FO”OW The ScreeﬂShOTS TO kﬂOW WhGT
You have 3 guesses left. .

Your guess: u your oufput should look like!

That guess is correct.

Your word now looks like this: -U-—-

You have 3 guesses left.

Your guess: s

There are no S's in the word.

Your word now looks like this: -U-—

You have 2 guesses left.

|\Your guess: t

There are no T's in the word.

Your word now looks like this: -U-——

You have 1 guesses left.

Your guess: r

There are no R's in the word.

|You're completely hung.

The word was: FUZZY

Task 2: Hangman Graphics

Task 2: Hangman Graphics

Add the canvas instance variable to the window using init ()

This is a console (not graphics!) program—call graphics methods on the canvas object.
l.e..canvas.add (object, x, V) ;

Add the main objects (background, Karel, and parachute) to the canvas

Add, and remove one-by-one, the parachute cords

Use the exact order specified in the handout: alternating from outside in, start on right
Add current word state and incorrectly guessed letters to the canvas

Flip Karel if user loses game

Task 2: Add main graphics

All images are in files included in the project
Sizes and y-locations are constants

Make sure objects are centered!

File Name Description
“background.jpg” has the nice sky background,
“karel .png” has the Karel image.
“parachute.png” has the parachute image.

“karelFlipped.png” has a picture of Karel upside down.

/ guesses left 3 guesses left game over

Task 2: Add & remove parachute cords

N_GUESSES (default 7) lines

Tops of lines are evenly spaced along the bottom
of the parachute

Bottoms of lines are all at centerpoint of top edge
of Karel

Removed one-by-one from outside to center,
alternating starting on the right

There are multiple reasonable ways to do this, and
this part will be easier to think about once you've
added main graphics

Task 2: Add labels for game state

Use GLabels to represent current
state of guessed word and
incorrectly guessed letters
Update these when the game
state changes due to user input
Center horizontally

Size, y-location, font are constants

-UZZ-

AETIO

Task 2: Ending graphics

Use karelFlipped.png if Karel runs
out of cords

Plenty of possibilities for extensions
here!

Task 3: Random Word from File

private String getRandomWord()

Before starting this milestone, just use the provided “stub” implementation to get
one of 10 random words.

1. Open the data file HangmanLexicon.txt using a Scanner (at start of
program)

2. Read the lines from the file into an ArrayList (at start of program)

3. Reimplement getRandomWord so it uses this ArrayList as the source of the
words.

There is also a ShorterLexicon.txt file you can use for testing/debugging.

Extensions

Extensions are optional, and you will get a small amount of extra credit if you do them
Focus on the main program first, though — extensions won't make up for a broken Hangman!
If you do extensions, submit two different .java files for the assignment
The basic Hangman.java that meets all of the assignment requirements

HangmanExtra.java that has your extensions. In Eclipse, right click on Hangman.java, click
Copy, then ctrl+v (paste). In the Name Conflict window that appears, write HangmanExtra
and click OK, then make extension edits in the new file. Both files will submit together.

In HangmankExira.java, be sure to comment all of your extensions in the header
comment so your SL knows what to look for.

See the spec forideas or come up with your own!

Final Tips

Make sure your program compiles without any errors or warnings

Follow the spec carefully and make sure your output matches the spec and
expected output

Continuous decomposifion

Make sure you properly handle all user input, including faulty/unexpected input
Try to break your program :)

Use instance variables only where absolutely necessary

Don't have a method that calls itself

Once you've put some time into understanding the relevant bug or concept, come
to the LalR with any remaining questions

Incorporate IG feedback!

