
Chris Piech Section #5
CS 106A February 12, 2018

Section Handout #5: Files, ArrayLists, and Arrays
 Portions of this handout by Eric Roberts and Marty Stepp

1. Word Count
Write a program WordCount that reads a file and reports how many lines, words, and
characters appear in it. Suppose, for example, that the file lear.txt contains the following
passage from Shakespeare’s King Lear:

Poor naked wretches, wheresoe'er you are,
That bide the pelting of this pitiless storm,
How shall your houseless heads and unfed sides,
Your loop'd and window'd raggedness, defend you
From seasons such as these? O, I have ta'en
Too little care of this!

Given this file, your program should be able to generate the following sample run:

For the purposes of this program, a word consists of a consecutive sequence of letters
and/or digits, which you can test using the static method Character.isLetterOrDigit.
You should reprompt the user until they enter a valid filename.

2. How Unique!
Write a program that asks the user for a list of
names (one per line) until the user enters a blank
line (i.e., just hits return when asked for a name).
At that point the program should print out the
list of names entered, where each name is listed
only once (i.e., uniquely) no matter how many
times the user entered the name in the program.
You may find that using an ArrayList to keep
track of the names entered by the user may
greatly simplify this problem. A sample run of
this program is shown at right.

3. Mirror

Write a method named mirror that accepts an ArrayList of strings as a parameter and
modifies it to also contain a mirrored copy of the list. It should modify the parameter itself,
and not return any value. For example, it should be able to be used as follows:

ArrayList myList = ... // ["how", "are", "you"]

mirror(myList);

println(myList); // ["how", "are", "you", "you", "are", "how"]

4. Index Of

Write a method named indexOf that returns the index of a particular value in an array of
integers. The method should return the index of the first occurrence of the target value in
the array. If the value is not in the array, it should return -1. For example, if an array stores
the following values:
 int[] a = {42, 7, -9, 14, 8, 39, 42, 8, 19, 0};

Then the call indexOf(a, 8) should return 4 because the index of the first occurrence of
value 8 in the array is at index 4. The call indexOf(a, 2) should return -1 because value
2 is not in the array.

5. Unique Numbers

Write a method named numUnique that accepts an array of integers as a parameter and
returns the number of unique values in the array. The array is guaranteed to be in sorted
order, which means that duplicates will be grouped together. For example, if an array
stores the following values:
 int[] list = {5, 7, 7, 7, 22, 22, 23, 35, 35, 40, 40, 40}

then the call numUnique(list) should return 6 because this list has 6 unique values (5,
7, 22, 23, 35, 40). It is possible that the list might not have any duplicates. If list
instead stored:
 int[] list = {1, 2, 11, 17, 24, 25, 26, 31, 34, 37, 40, 41}

then a call on the method would return 12 because this list contains 12 different values. If
passed an empty list, your method should return 0.

6. Collapse

Write a method named collapse that accepts an array of integers as a parameter and
returns a new array containing the result of replacing each pair of integers with the sum
of that pair. For example, if an array called list stores the values {7, 2, 8, 9, 4, 13,
7, 1, 9, 10}, then the call of collapse(list) should return a new array containing
{9, 17, 17, 8, 19}. The first pair from the original list is collapsed into 9 (7 + 2), the

second pair is collapsed into 17 (8 + 9), and so on. If the list stores an odd number of
elements, the final element is not collapsed. For example, if the list had been {1, 2, 3,
4, 5}, then the call would return {3, 7, 5}. Your method should not change the array
that is passed as a parameter.

7. Histograms

Write a program that reads a list of exam scores from the file
MidtermScores.txt (which contains one score per line) and then
displays a histogram of those numbers, divided into the ranges 0-
9, 10-19, 20-29, and so forth, up to the range containing only the
value 100. If, for example, MidtermScores.txt contains the data
shown in the right margin, your program should then be able to
generate a histogram that looks as much as possible like the
following sample run:

MidtermScores.txt
73
58
73
93
82
62
80
53
93
52
92
75
65
95
23
100
75
38
80
77
92
60
98
95
62
87
97
73
78
72
55
58
42
31
78
70
78
74
70
60
72
75
84
87
62
17
92
78
74
65
90

