CS 106A, Lecture 26
Life After CS 106A, Part 2
Plan for today

- Intro to machine learning
- Supervised Learning
- Applications of machine learning
- Implications of machine learning
- Educational Technology
Learning Goals

• Understand the basics of how machine learning works, its advantages, and its pitfalls
• Understand that CS is just a tool – now that you have begun to wield it, what will you use it for?
Plan for today

• Intro to machine learning
 • Supervised Learning
 • Applications of machine learning
 • Implications of machine learning
 • Educational Technology
Machine Learning (ML) and Artificial Intelligence (AI) are increasingly prevalent in our lives.

It’s important to be able to think critically about these technologies, especially if you’re developing them!
megapope

self driving cars aren’t even hard to make lol just program it not to hit stuff

ronpaulhdwallpapers

if(goingToHitStuff) {
 dont();
}
Ex: Animal Classification

• We have a picture and we want to know if it’s a cat or not.

- true
- true
- true
- false
- false
- false
Here’s one way you might code this...

```java
private void isCat(GImage animal) {
    int[][][] pixels = animal.getPixelArray();
    if (containsTwoEyes(pixels)){
        if (hasWhiskers(pixels)){
            if (hasPointyEars(pixels)){
                return true;
            }
        }
    }
    return false;
}
```

Some tricky cases
Pros/Cons

• Pros
 – Matches our human intuition about what a cat is
 – Easy to understand the code

• Cons
 – Requires us to explicitly enumerate every feature that’s important, and know how important it is
 – Need to write code to detect eyes, and whiskers, and the pointiness of ears
 – Will never improve... cannot learn from its mistakes
What is Machine Learning?

• “The field of study that gives computers the ability to learn without being explicitly programmed” - Arthur Samuel, 1959

• How can a computer do this?

Data.
Train/Test Data

The algorithm gets **training data** that it can use to make predictions.

We use **test data** to evaluate how well it performs.
Animal Classification: Take 2

• Here’s a sketch of how we can approach this problem through machine learning:

• Input to the algorithm: MANY cats and MANY not-cats
Pros/Cons

• Pros
 – Don’t have to explicitly tell the algorithm what’s important to distinguish between cats and not-cats
 – Not specific to the cat problem: we could show it images of *anything* and *train* it to learn the difference
 – Gets better the more data we give it

• Cons
 – Sometimes hard to know why the algorithm makes the predictions it does
 – Requires us to specify an *update* mechanism: how is the algorithm supposed to improve itself?
 – Might require a lot of data to perform well
Where is this useful?

• Skin cancer classification
 – Is a given lesion **benign** or **malignant**?

• A machine learning algorithm has been shown to perform **as well** as dermatologists.

Where is this useful?

- Predicting infrastructure development from satellite images
 - previously required intense field surveys with large data gaps

- There are other tasks where machine learning algorithms perform better than skilled humans.

Oshri et al., 2018.
Plan for today

• Intro to machine learning
• Supervised Learning
• Applications of machine learning
• Implications of machine learning
• Educational Technology
Supervised Learning

• **Supervised learning** is when you know the “ground truth” correct answers
 – ex: classifying cats, skin lesions

• **Unsupervised learning** is when you don’t – this is a much harder problem!
 – ex: text extraction, discovering new drugs
Ex: Digit Classification

• Task:
 – Given a picture of a handwritten digit from 0-9, predict which integer it is

3 \rightarrow 3
4 \rightarrow 4
2 \rightarrow 2
9 \rightarrow 9
“label”
k-Nearest Neighbors

live demo!
k-Nearest Neighbors

• Idea: when given a test input, look through all the training examples to find the “closest” one.

• Under the assumption that “close” inputs share the same label, return the label of that closest training example.
k-Nearest Neighbors

• Idea: when given a test input, look through all the training examples to find the k “closest” inputs.

• Under the assumption that “close” inputs share the same label, return the most common label of the k closest inputs.
Plan for today

• Intro to machine learning
• Supervised Learning
• Applications of machine learning
• Implications of machine learning
• Educational Technology
What else can ML do?

• Supervised Learning
 – Classification, like the cat or skin cancer or digits examples
 – Regression
Regression Example

- **House price prediction**

Training Data

<table>
<thead>
<tr>
<th>Square Footage</th>
<th># Bedrooms</th>
<th># Bathrooms</th>
<th>House Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>2</td>
<td>1</td>
<td>150,000</td>
</tr>
<tr>
<td>1,256</td>
<td>1</td>
<td>1</td>
<td>175,000</td>
</tr>
<tr>
<td>5,897</td>
<td>5</td>
<td>2</td>
<td>2,000,000</td>
</tr>
<tr>
<td>4,300</td>
<td>3</td>
<td>2</td>
<td>1,300,000</td>
</tr>
<tr>
<td>2,400</td>
<td>3</td>
<td>3</td>
<td>750,000</td>
</tr>
<tr>
<td>2,600</td>
<td>2</td>
<td>1</td>
<td>690,000</td>
</tr>
<tr>
<td>3,000</td>
<td>4</td>
<td>2</td>
<td>1,000,000</td>
</tr>
</tbody>
</table>

Test Time

“My house has 1,800 square feet, 2 bedrooms, and 2 bathrooms. How much should I expect it to sell for?”
Regression Example

• Poverty from nightlights

Training Data

Test Time

Average household income?

Xie et al., 2016.
What else can ML do?

• Supervised Learning
 – Classification
 – Regression

• Unsupervised Learning
 – Finding *structure* in unlabeled data
Netflix Prize Example
What else can ML do?

• Supervised Learning
 – Classification
 – Regression

• Unsupervised Learning

• Reinforcement Learning
What remains really hard?

• Human-like dialog
• Common-sense reasoning about the world
• **Strong** generalization
• Interpretability of decisions
• ... and much else 😊
Plan for today

• Intro to machine learning
• Supervised Learning
• Applications of machine learning
• Implications of machine learning
• Educational Technology
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, Adam Kalai
(Submitted on 21 Jul 2016)

Twitter taught Microsoft’s AI chatbot to be a racist asshole in less than a day

The New York Times

Opinion

OP-ED CONTRIBUTOR

When an Algorithm Helps Send You to Prison
Algorithmic bias

• ML is powerful because it can learn from data, without explicit instruction
• ... but because of that, is subject to the same flaws found in data
“With artificial intelligence we are summoning the demon” – Elon Musk
Recap

• ML is powerful because it can learn from data, without explicit instruction
• ... but because of that, is subject to the same flaws found in data
• ... and must be used safely, with thoughtful human input
Plan for today

• Intro to machine learning
• Supervised Learning
• Applications of machine learning
• Implications of machine learning
• Educational Technology
Educational Technology (EdTech)

- MOOCs (massive open online courses)
- tools to learn CS
- Chromebooks / iPads in classrooms
- online / AI tutoring
- autograding
- circuits / Arduinos / Raspberry Pi
- ...and so much more
Annie’s (simplified) River of CS + Education

106A Tools

Maker spaces

CZI

???

some probably unrealistic holy grail
Recap

• like much of tech + social good, the answers are unclear
• best solution may not involve tech at all!
• important to stay close to the problem and stay empathetic :-}
Recap

- Intro to machine learning
- Supervised Learning
- Applications of machine learning
- Implications of machine learning
- Educational Technology

Next time: final review 😨