
YEAH: Assignment 5

Will and Tori

Part 1: Strings & Dictionaries

String Encoding

Goal: Given a string encoded, return the decrypted string

● Example: ‘B1o2k2e2p1e1r1!3’ -> ‘Bookkeeper!!!’
○ Each letter is followed by the number of times it is displayed

consecutively
○ 1 if not repeated, like the B in Bookkeeper

● Many possible approaches

String Encoding

Goal: Given a string encoded, return the decrypted string

● Think about the characters encoded in pairs
○ Each pair has a character followed by a digit

○ ‘B1o2k2e2p1e1r1!3’-> ‘B1 o2 k2 e2 p1 e1 r1 !3’

● Digits can only be 1-9
○ A character is guaranteed to be followed by a digit

Credit Card Bill

9/2/19 [Target] $12
9/21/19 [Stanford Bookstore] $102
9/30/19 [Jamba Juice] $5
10/7/19 [Target] $17
10/22/19 [Jamba Juice] $8
10/28/19 [Target] $45

Target: $74
Stanford Bookstore: $102
Jamba Juice: $13

INPUT_FILE PROGRAM OUTPUT

● Read in INPUT_FILE
● Extract the information you need

● Print the store name and
total amount spent there

How did we
calculate
this?

Credit Card Bill

● What information do we need to keep track of?

● Dictionaries map a key to a value
○ You can access a value by its key and update it

Hint: Use a dictionary!

Shake Shack: $16
Grocery Hut: $293
Ace Hardware: $14
Joan's Fabric: $18
Nom Nom Nom: $12

The store’s name The total amount spent
at that store

Part 2: WordGuess

Part 1: Getting a secret word

● Choose a random word using get_word()
○ For Part 1, there are 3 possible secret words: ‘HAPPY’, ‘PYTHON’, and

‘COMPUTER’

● Pass the chosen word into play_game()
○ This will be the word the user tries to guess!

● In Part 2, you’ll expand the set of possible secret words

Part 1: Play the game

Keep track of
the user’s word

Get the user’s
guess

Keep track of remaining guesses

play_game(‘PYTHON’)

*Notice that the
user can guess lower
or upper case
letters

*The number of guesses
starts at INITIAL_GUESSES

Print out
messages
to user

*Make sure the user
only enters single
characters

Part 1: Play the game

● Proofreading user input
○ Must be a single character
○ Must be able to compare it to characters in the secret word

■ How do we check that ‘p’ is in ‘PYTHON’?

● Printing out messages to the user
○ What user’s word currently looks like - ex.’P__H__’
○ How many guesses they have left
○ Prompt user for a new guess
○ Report whether or not the guess was correct

Part 1: Play the game

How should we update the user’s word?...Pretend our secret
word is ‘PYTHON’

● Step 1: Initialize user word to a row of dashes: ______

● Step 2: Update the user word when a guess is correct
○ If the user guesses ‘p’, update it to P_____

● Step 3: Figure out when no more updates are needed

Part 1: Play the game

● Continue playing until the game ends

● Detect the end of the game
○ When the secret word has been guessed
○ When the user is out of guesses

● Print out a message informing the user
○ “Congratulations, the word is: <insert word>” or "Sorry, you lost.

The secret word was: <insert word>”

● Think about control flow!

Part 2: Reading a word list from a file

● Reimplement get_word() to choose a secret word out of a
much larger set

● Get possible words out of LEXICON_FILE (about 122,000
words)

ZIBETS
ZIGGED
ZIGGING
ZIGGURAT
ZIGGURATS
ZIGZAG

LEXICON_FILE

*If you’re curious what’s in LEXICON_FILE, you can open up
‘Lexicon.txt’

Here’s a snippet!

Part 2: Reading a word list from a file

● Read the lines from LEXICON_FILE into a list
○ Each line in the file stores a word

● Randomly choose a word from the list and return it
○ random.randrange(), random.randint(), random.choice()

file = open(FILENAME)
for line in file:

line = line.strip()
do something with this line

How do we process
each line?

Don’t forget to
strip your lines

Good luck!

