Adwin

< Sections start this week

* Section assignments e-mailed, revisit signup page to switch
& Compiler installation fun

* Any news will post to announcements on class web site
< Today’s topics

* C++ stream classes
* CS106 class library: Scanner, Vector

¢ Reading
* Reader Ch. 3, Handout |4 (today & next)

Lecture #4

C++ console 170

< Stream objects cout/cin
* cout is the console output stream, cin for console input

* << s stream insertion, >> is stream extraction
#include <iostream>

int mainQ)
{ .
int x,y;
cout << "Enter two numbers: ";
cin >> x >> y;
cout << "You said: << X << and " << y << endl;

< Safer, easier read from console using our simpio.h

" "

#include "simpio.h"

int mainQ)

{
int x = GetInteger(Q);
string answer = GetLine();

C++ file 170

< File streams declared in <fstream>
* streams are objects, dot notation used

* ifstream for reading, ofstream for writing
#include <fstream>

ifstream in;
ofstream out;

< Use open to attach stream to file on disk

in.open(""names. txt");
out.open(filename.c_str()); // requires C-string!

< Check status with fail, clear to reset after error

if (in.failQ)
in.clearQ);

Stream operations

< Read/write single characters

ch = in.get(Q;
out.put(ch);

< Read/write entire lines
getline(in, line);
out << line << endl;

< Formatted read/write

in >> num >> str;
out << num << strj;

< Use fail to check for error
if (in.failQ) ...

Class libraries

< Some libraries provide free functions

* RandomInteger, getline, sqrt etc

< Other libraries provide classes

* string, stream

< Class = data + operations

* Tight coupling between value and operations that manipulate it
* Class interface describes abstraction
* Models string/time/ballot/database/etc with appropriate features

< Client use of object
* Learn the abstraction, use public interface
* Unconcerned with implementation details

Why is 00 so successful?

<& Tames complexity

* Large programs become interacting objects

* Each class developed/tested independently

* Clean separation between client & implementer
< Objects can model real-word

* Time, Ballot, ClassList, etc

* Build on existing understanding of concepts
< Facilitates re-use

* Also easily change/extend class in future

CS106 class library

< Provide common functionality, highly leveraged
<& Scanner
< Vector, Grid, Stack, Queue, Map, Set
& Why?
< Living "higher on the food chain"
< Efficient, debugged
<& Clean abstraction

¢ WWe study as client and later as implementer
& Why client-first?

CS106 Scanner

< Scanner's job: break apart input string into tokens
<& Mostly divide on white-space
< Some logic for recognizing numbers, punctuation, etc.
< Operations
< setInput
¢ nextToken/hasMoreTokens
<& Fancy options available with set/get

< Used for?

< Handling user input, reading text files, parsing expressions, processing
commands, etc.

[This| [] [line] [] [contains]| [][10][] [

Scanner interface

class Scanner {

public:
Scanner(); // constructor (invoked when allocated)
~Scanner(); // destructor (invoked when deallocated)

void setInput(string str); // set string to be scanned
string nextToken();

bool hasMoreTokens();

enum spaceOptionT { PreserveSpaces, IgnoreSpaces };

void setSpaceOption(spaceOptionT option);
spaceOptionT getSpaceOption();

// other advanced options excerpted for clarity

Client use of Scanner

void CountTokens()
{
Scanner scanner;
cout << "Please enter a sentence: ";
scanner.setInput(GetLine(Q));
int count = 0;
while (scanner.hasMoreTokens()) {
scanner.nextToken();
count++;
}

cout << "You entered " << count << " tokens." << endl;

Containers

¢ Most classes in our library are container classes
< Store data, provide convenient and efficient access
< High utility for all types of programs

< C++ has a built-in "raw array"
< Functional, but serious weaknesses (sizing, safety)

< CS106B Vector class as a "better" array
< Bounds-checking
<& Add, insert, remove
< Memory management, knows its size

Template containers

<& C++ templates perfect for container classes
<& Template is pattern with one or more placeholders
¢ Client using template fills in placeholder to indicate specific version

< Vector class as template
<& Template class has placeholder for type of element being stored
< Interface/implementation written using placeholder

< Client instantiates specific vectors (vector of chars, vector of doubles)
as needed

Vector interface

template <typename ElemType>
class Vector {

public:
Vector();
~Vector();

int size();
bool +disEmpty();

ElemType getAt(int index);
void setAt(int index, ElemType value);

void add(ElemType value);
void insertAt(int pos, ElemType value);
void removeAt(int pos);

Templates are type-safe!

#include "vector.h"

void TestVector()

{
Vector<int> nums;
nums.add(7);

Vector<string> words;
words.add("apple™);

nums .add(""banana'); // COMPILE ERROR!
char c = words.getAt(0); // COMPILE ERROR!
Vector<double> s = nums; // COMPILE ERROR!

Rules for template clients

< Client includes interface file as usual
> #include "vector.h"
¢ Client must specialize to fill in the placeholder

<& Cannot use Vector without qualification, must be Vector<char,
Vector<locationT>, ...

<& Applies to declarations (variables, parameters, return types) and calling
constructor
< Vector is specialized for its element type
<& Attempt to add TocationT into Vector<char> will not compile!

Client use of Vector

#include "vector.h"

Vector<int> MakeRandomVector(int sz)
{
Vector<int> numbers;
for (int i = 0; i < sz; i++)
numbers.add(RandomInteger(1l, 100));
return numbers;

}
void PrintVector(Vector<int> &v)
{
for (int i = 0; i < v.size(Q); i++)
cout << v[i] << " ";
}

int mainQ)

Vector<int> nums = MakeRandomVector(10);
PrintVector (nums) ;

