
Admin
Sections start this week
• Section assignments e-mailed, revisit signup page to switch

Compiler installation fun
• Any news will post to announcements on class web site

Today’s topics
• C++ stream classes

• CS106 class library: Scanner, Vector

Reading
• Reader Ch. 3, Handout 14 (today & next)

Lecture #4

C++ console I/O
Stream objects cout/cin
• cout is the console output stream, cin for console input

• << is stream insertion, >> is stream extraction

Safer, easier read from console using our simpio.h

#include <iostream>

int main()
{
 int x,y;
 cout << "Enter two numbers: ";
 cin >> x >> y;
 cout << "You said: " << x << " and " << y << endl;

#include "simpio.h"

int main()
{
 int x = GetInteger();
 string answer = GetLine();

C++ file I/O
File streams declared in <fstream>
• streams are objects, dot notation used

• ifstream for reading, ofstream for writing

Use open to attach stream to file on disk

Check status with fail, clear to reset after error

#include <fstream>

ifstream in;
ofstream out;

in.open("names.txt");
out.open(filename.c_str()); // requires C-string!

if (in.fail())
 in.clear();

Stream operations
Read/write single characters

Read/write entire lines

Formatted read/write

Use fail to check for error

ch = in.get();
out.put(ch);

in >> num >> str;
out << num << str;

if (in.fail()) ...

getline(in, line);
out << line << endl;

Class libraries
Some libraries provide free functions

• RandomInteger, getline, sqrt etc

Other libraries provide classes
• string, stream

Class = data + operations
• Tight coupling between value and operations that manipulate it

• Class interface describes abstraction

• Models string/time/ballot/database/etc with appropriate features

Client use of object
• Learn the abstraction, use public interface

• Unconcerned with implementation details

Read/write entire lines

Formatted read/write

Use fail to check for error

Cs106 libraryes addes more

Why is OO so successful?
Tames complexity
• Large programs become interacting objects

• Each class developed/tested independently

• Clean separation between client & implementer

Objects can model real-word
• Time, Ballot, ClassList, etc

• Build on existing understanding of concepts

Facilitates re-use
• Also easily change/extend class in future

CS106 class library
Provide common functionality, highly leveraged

Scanner

Vector, Grid, Stack, Queue, Map, Set

Why?
Living "higher on the food chain"

Efficient, debugged

Clean abstraction

We study as client and later as implementer
Why client-first?

CS106 Scanner
Scanner's job: break apart input string into tokens

Mostly divide on white-space

Some logic for recognizing numbers, punctuation, etc.

Operations
setInput

nextToken/hasMoreTokens

Fancy options available with set/get

Used for?
Handling user input, reading text files, parsing expressions, processing
commands, etc.

This ! line ! contains ! 10 ! tokens .

Scanner interface
class Scanner {
 public:
 Scanner(); // constructor (invoked when allocated)
 ~Scanner(); // destructor (invoked when deallocated)

 void setInput(string str); // set string to be scanned

 string nextToken();
 bool hasMoreTokens();

 enum spaceOptionT { PreserveSpaces, IgnoreSpaces };

 void setSpaceOption(spaceOptionT option);
 spaceOptionT getSpaceOption();

 // other advanced options excerpted for clarity
};

Client use of Scanner
void CountTokens()
{
 Scanner scanner;

 cout << "Please enter a sentence: ";
 scanner.setInput(GetLine());
 int count = 0;
 while (scanner.hasMoreTokens()) {
 scanner.nextToken();
 count++;
 }
 cout << "You entered " << count << " tokens." << endl;
}

Containers
Most classes in our library are container classes

Store data, provide convenient and efficient access

High utility for all types of programs

C++ has a built-in "raw array"
Functional, but serious weaknesses (sizing, safety)

CS106B Vector class as a "better" array
Bounds-checking

Add, insert, remove

Memory management, knows its size

Template containers
C++ templates perfect for container classes

Template is pattern with one or more placeholders

Client using template fills in placeholder to indicate specific version

Vector class as template
Template class has placeholder for type of element being stored

Interface/implementation written using placeholder

Client instantiates specific vectors (vector of chars, vector of doubles)
as needed

Vector interface
template <typename ElemType>
 class Vector {

 public:
 Vector();
 ~Vector();

 int size();
 bool isEmpty();

 ElemType getAt(int index);
 void setAt(int index, ElemType value);

 void add(ElemType value);
 void insertAt(int pos, ElemType value);
 void removeAt(int pos);
};

Templates are type-safe!
#include "vector.h"

void TestVector()
{
 Vector<int> nums;
 nums.add(7);

 Vector<string> words;
 words.add("apple");

 nums.add("banana"); // COMPILE ERROR!
 char c = words.getAt(0); // COMPILE ERROR!
 Vector<double> s = nums; // COMPILE ERROR!
}

Rules for template clients
Client includes interface file as usual
#include "vector.h"

Client must specialize to fill in the placeholder
Cannot use Vector without qualification, must be Vector<char>,
Vector<locationT> , ...

Applies to declarations (variables, parameters, return types) and calling
constructor

Vector is specialized for its element type
Attempt to add locationT into Vector<char> will not compile!

Client use of Vector
#include "vector.h"

Vector<int> MakeRandomVector(int sz)
{
 Vector<int> numbers;
 for (int i = 0; i < sz; i++)
 numbers.add(RandomInteger(1, 100));
 return numbers;
}

void PrintVector(Vector<int> &v)
{
 for (int i = 0; i < v.size(); i++)
 cout << v[i] << " ";
}

int main()
{
 Vector<int> nums = MakeRandomVector(10);
 PrintVector(nums);
 ...

