
Admin
Assign 2 due Wed

Today’s topics
• Functional recursion

Reading
• Reader ch. 4-5-6 (today-W-F)

Lecture #8

Solving problems recursively
A recursive function calls itself — wacky!

Idea: solve problem using coworkers (clones) who
work and act like you
• Delegate similar, smaller problem to clone

• Combine result from clone(s) to solve total problem

• Work toward trivial version that is directly solvable

For problems that exhibit "self-similarity"
• Structure repeats within at different levels of scale

• Solving larger problem means solving smaller problem(s) within

Feels mysterious at first
• "Leap of faith" required

• With practice, master the art of recursive decomposition

• Eventually grok the underlying patterns

Functional recursion
Function that returns answer/result
• Outer problem result uses result from smaller, same problem(s)

Base case
• Simplest version of problem

• Can be directly solved

Recursive case
• Make call(s) to self to get results for smaller, simpler version(s)

• Recursive calls must advance toward base case

• Results of recursive calls combined to solve larger version

Power example
C++ has no exponentiation op

Iterative formulation for Raise function

• baseexp = base * base * * base (exp times)

int Raise(int base, int exp)
{
 int result = 1;
 for (int i = 0; i < exp; i++)
 result *= base;
 return result;
}

Recursive version

int Raise(int base, int exp)
{
 if (exp == 0)
 return 1;
 else
 return base * Raise(base, exp-1);
}

} Base case

} Recursive case

Now consider recursive formulation

• baseexp = base * baseexp-1

More efficient recursion

int Raise(int base, int exp)
{
 if (exp == 0)
 return 1;
 else {
 int half = Raise(base, exp/2);
 if (exp % 2 == 0)
 return half * half;
 else
 return base * half * half;
 }
}

baseexp = baseexp/2 * baseexp/2 (* base if exp is odd)

Avoid "arm's length" recursion

int Raise(int base, int exp)
{
 if (exp == 0) return 1;
 else if (exp == 1) return base;
 else if (exp == 2) return base * base;
 else if (exp == 3) return base * base * base;
 else return base * Raise(base, exp - 1);
} !

Aim for simple, clean base case
• No need to anticipate other earlier stopping points

• Avoid looking ahead before recursive calls, just let simple base case handle

Recursion and efficiency
Recursion provides no guarantee of (in)efficiency
• Recursion can require same resources as alternative approach

• Or recursion may be much more or much less efficient

• For problems with simple iterative solution, iteration is likely the best

Why recursion then?
• Can express with clear, direct, elegant code

• Can intuitively model a task that is recursive in nature

• Solution may require recursion —!iteration won't do!

Palindromes
A palindrome string reads same when reversed
• e.g. "was it a car or a cat i saw", "go hang a salami im a lasagna hog"

Recursive insight
• First and last letter match and interior is palindrome

Base case?

bool IsPalindrome(string s)
{
 if (s.length() <= 1) return true;
 return s[0] == s[s.length()-1] &&
 IsPalindrome(s.substr(1, s.length()-2);
}

Binary search
Searching for key within vector

• Linear search starts at beginning and searches to end

• Binary search uses divide-and-conquer (requires sorted vector)

• Much faster method!

Recursive insight:
• Consider middle elem of vector, if key, you're done

• Otherwise decide which half to recursively search

Base case?

54 80

Binary search code
const int NotFound = -1;

int BSearch(Vector<string> &v,
 int start, int stop, string key)
{
 if (start > stop) return NotFound;

 int mid = (start + stop)/2;
 if (key == v[mid])
 return mid;
 else if (key < v[mid])
 return BSearch(v, start, mid-1, key);
 else
 return BSearch(v, mid+1, stop, key);
}

Classic "divide and conquer" algorithm
• Operates very efficiently! Double size of vector, how much longer to

search?

Choosing a subset
Reader ch 4, exercise 8
• Given N things, how many different ways can you choose K of them?

• e.g. given a dorm of 60 people, how many different groups of 4
people can go together to Flicks?

• N-choose-K, written as C(n, k)

 Number of subsets that include

+ Number of subsets that don't include

= C(n-1, k-1)

= C(n-1, k)

Choose code

int C(int n, int k)
{
 if (k == 0 || k == n)
 return 1;
 else
 return C(n-1, k) + C(n-1, k-1);
}

Simplest base case
• when no choices remain at all

