
Admin
Midterm done!

Assign 5 out
• Fun, not too hefty

• Use of outside sources

Today’s topics
• Finish template fns, start OOP, class design/implementation

Reading
• Ch 8 objects/classes (today)

• Ch 10 class templates (next)

Lecture #17

Sort template with callback fn
template <typename Type>

 void Sort(Vector<Type> &v, int (cmp)(Type, Type))

 {

 for (int i = 0; i < v.size() - 1; i++) {

 int minIndex = i;

 for (int j = i+1; j < v.size(); j++) {

 if (cmp(v[j], v[minIndex]) < 0)

 minIndex = j;

 }

 Swap(v[i], v[minIndex]);

 }

 }

Now can truly work for all types!
• Client supplies function pointer to handle comparison for type

Supplying callback fn
int CoordCmp(coordT c1, coordT c2)

{

 if (c1.x < c2.x) return (-1);

 else if (c1.x > c2.x) return (1);

 else if (c1.y < c2.y) return (-1);

 else if (c1.y > c2.y) return (1);

 else return (0);

}

int main()

{

 Vector<coordT> pts = ... ;

 Sort(pts, CoordCmp);

One last convenience
Currently, client must provide callback
• Not as convenient when could use built-in < when it would work

Add behavior to use < by default

Client can supply function only when needed
• Default argument for comparator is generic compare callback

• OperatorCmp invokes built-in < on arguments

Final version of Sort template
(from CS106b cmpfn.h)

template <typename Type>

 int OperatorCmp(Type one, Type two)

 {

 if (one == two) return 0;

 return (one < two ? –1 : 1);

 }

template <typename Type>

 void Sort(Vector<Type> &v,

 int (cmp)(Type one, Type two) = OperatorCmp)

 {

 for (int i = 0; i < v.size() - 1; i++) {

 // rest of code as before

Use of Sort template
int ReverseCmp(int a, int b)

{

 if (a < b) return 1;

 else if (a > b) return -1;

 return 0;

}

int main()

{

 Vector<int> num = ...;

 Sort(num);

 Sort(num, ReverseCmp);

Why object-oriented programming?
Most programs organized around data
• Making data the focus is good fit

Objects leverage analogy to real world
• Time, Stack, Event, Message, etc.

Abstraction clears away details
• Can focus on other tasks instead

Encapsulation provides robustness
• Object internals can be kept private and secure

Modularity in development
• Design, develop, test classes independently

Potential for reuse
• Class is tidy package that can be re-used in other programs

Class division
 Client

Code file client.cpp

Contains code using
objects

#include class.h

interface for each class
used

 Interface

Header file class.h

Contains declaration of
class interface (data
members and member
functions)

 Implementation

Code file class.cpp

Contains code for class
member functions

#include class.h

interface

Class interface in .h file
Class interface lists data and operations
• Data members (fields)

• Member functions (methods)

• Use public/private sections to control visibility to clients

/* File: time.h */

class Time {

 public:

 void setHour(int newValue);

 int getHour();

 void shiftBy(int dh, int dm);

 string toString();

 /* And so on... */

 private:

 int hour, minute;

};

Storage for objects
A Time object has two data members

Object about same size as comparable struct

Declare Time object on stack
 Time t;

Each Time object has its own copy of data members

When accessing members, it is always a particular
object's copy

hour

?

?

minute

t

Accessing members
Members accessed like struct fields
• Usually declare on stack, but can use new for heap

• Use . or -> depending on whether pointer or not

Client can access public features
Time t;

t.setHour(3);

cout << t.getHour();

t.hour = 3; // only ok if field public

Object being messaged is called receiver

Error for client to access private member

Class implementation
Implementation goes in .cpp file
• Must #include class.h file

• Contains code for member functions

• Function name must include class scope (else assumed global function)

/* File: time.cpp */

#include "time.h"

void Time::setHour(int newValue)

{

 hour = newValue;

}

string Time::toString()

{

 return IntegerToString(hour) + ":"

 + IntegerToString(minute);

}

Implementing member functions
Members of receiver accessible in member function

void Time::shiftBy (int dh, int dm) {

 hour += dh;

 minute += dm;

}

Can send other messages to receiver
void Time::shiftBy(int dh, int dm) {

 setHour(hour + dh);

 setMinute(minute + dm);

}

Special variable: this (pointer to receiver)
void Time::shiftBy(int dh, int dm) {

 this->hour += dh;

 this->setMinute(minute + dm);

}

Maintaining object consistency
Setters can constrain to correct range

void Time::setHour(int newValue) {

 if (newValue < 1) hour = 1;

 else if (newValue > 12) hour = 12;

 else hour = newValue;

}

void Time::setMinute(int newValue) {

 minute = newValue % 60;

}

What if data members were public?

What is advantage of making all access, even within
implementation, go through setters?

Constructors
Special function to init newly created object
• Data members for new object are uninitialized otherwise (not

automatically set to zero as in Java)

Called automatically when declared/allocated
• Allocation and initialization go hand-in-hand

Special prototype
• Must have exact same name as class

• No return type

• Can have whatever parameters you need

Add Time constructor
Declare constructor in time.h interface

class Time {

 public:

 Time(int hr, int min);

 void setHour(int newValue);

};

Implement constructor in time.cpp
Time::Time(int hr, int min) {

 hour = hr;

 minute = min;

}

Give args to constructor when declaring
Time t(2, 15);

Destructors
Special function to clean up object
• Data members may be orphaned otherwise

• Called automatically on delete or exiting scope of object

Special prototype
• Same name as class prefixed with ~

• No parameters

• No return type

Not always needed
• Only if dynamically allocated members to delete, open files to close,

etc.

Basic thoughts on object design
Never let object get into malformed state
• No public data members

• Correctly initialize all members in constructor

• Only provide setters if needed, be sure properly constrained

Object is responsible for own behavior
• Interface includes complete set of operations

• Need to print a Time? Add print method to class, don’t pull out the
hour/minute fields and do it yourself

• Same for converting time to string, comparing two times, shifting a time
forward, etc.

Internal vs external representation
Client might expect Time work in terms of hours
and minutes
• But this is difficult to manipulate internally

• Considering mixing in AM/PM, too

• What is required to shift time or compare?

Consider comparing two Times:
bool Time::isLessThan(Time other) {

 return ((hour < other.hour) ||

 (hour == other.hour && minute < other.minute);

}

• Is there a better way?

Better representation
If Time stored in military 24-hour time?
• Somewhat easier to shift, avoids problems with AM/PM

If internally tracked as minutes since midnight..?
• Trivial to implementation “lessThan” operation

• Trivial to shift, easy to handle wrap around

Can provide accessor for hour/minute if needed
• Simple to compute from internal representation

Does changing internal data affect client use?
• What impact does making things public have on implementation

flexibility?

ADTs (abstract data types)
Client uses class as abstraction
• Invokes public operations only

• Internal implementation not relevant!

Client can't and shouldn't muck with internals
• Class data should private

Imagine a "wall" between client and implementor
• Wall prevents either from getting involved in other's business

• Interface is the "chink" in the wall

• Conduit allows controlled access between the two

Consider Lexicon
• Abstraction is a word list, operations to verify word/prefix

• How does it store list? using array? vector? set? does it matter to
client?

