Adwin

< Midterm done!
< Assign 5 out

* Fun, not too hefty

* Use of outside sources
< Today’s topics

* Finish template fns, start OOP, class design/implementation
< Reading

* Ch 8 objects/classes (today)

* Ch 10 class templates (next)

Lecture 17

Sort template with callback fn

template <typename Type>
void Sort(Vector<Type> &v, int (cmp)(Type, Type))
{
for (int i = 0; i < v.sizeQ) - 1; i++) {
int minIndex = 1;
for (int j = i+l; j < v.size(Q; j++) {
if (cmp(v[jl, vIminIndex]) < 0)
minIndex = j;
}
Swap(v[i], v[minIndex]);
}
}

& Now can truly work for all types!

* Client supplies function pointer to handle comparison for type

Supplying callback fn

int CoordCmp(coordT cl, coordT c2)

{
if (cl.x < c2.x) return (-1);
else if (cl.x > c2.x) return (1);
else if (cl.y < c2.y) return (-1);
else if (cl.y > c2.y) return (1);
else return (0);

}

int mainQ)

{

Vector<coordT> pts = ... ;
Sort(pts, CoordCmp);

Owne last convenience

& Currently, client must provide callback

* Not as convenient when could use built-in < when it would work

< Add behavior to use < by default

& Client can supply function only when needed
* Default argument for comparator is generic compare callback
* OperatorCmp invokes built-in < on arguments

Final version of Sort template

(from CS106b cmpfn.h)
template <typename Type>
int OperatorCmp(Type one, Type two)
{
if (one == two) return 0;
return (one < two ? -1 : 1);

template <typename Type>
void Sort(Vector<Type> &v,
int (cmp) (Type one, Type two) = OperatorCmp)
{
for (int i = 0; i < v.size() - 1; i++) {
// rest of code as before

Use of Sort template

int ReverseCmp(int a, int b)

{
if (a < b) return 1;
else if (a > b) return -1;
return 0;

}

int mainQ)

{

Vector<int> num = ...;

Sort(num) ;

Sort(num, ReverseCmp);

Why object-oriented programming?

<& Most programs organized around data
* Making data the focus is good fit

< Obijects leverage analogy to real world
* Time, Stack, Event, Message, etc.

< Abstraction clears away details
* Can focus on other tasks instead

< Encapsulation provides robustness
* Object internals can be kept private and secure

<& Modularity in development

* Design, develop, test classes independently

¢ Potential for reuse
* Class is tidy package that can be re-used in other programs

Class division

Client

Interface

Implementation

Code file client.cpp

Contains code using
objects

#include class.h
interface for each class
used

Header file class.h

Contains declaration of
class interface (data
members and member
functions)

Code file class.cpp

Contains code for class
member functions

#include class.h
interface

Class interface in .h file

& Class interface lists data and operations
* Data members (fields)
* Member functions (methods)
* Use public/private sections to control visibility to clients

/* File: time.h */

class Time {
public:
void setHour(int newValue);
int getHour(Q);
void shiftBy(int dh, int dm);
string toString(Q);
/* And so on... */
private:
int hour, minute;

};

Storage for objects

& ATime object has two data members
Object about same size as comparable struct

< Declare Time object on stack
Time t; t

O

hour ?

minute ?

&

Each Time object has its own copy of data members
When accessing members, it is always a particular
object's copy

&

Accessing members

& Members accessed like struct fields
* Usually declare on stack, but can use new for heap
* Use .or -> depending on whether pointer or not

& Client can access public features

Time t;

t.setHour(3);
cout << t.getHour(Q);
t.hour = 3; // only ok if field public

< Obiject being messaged is called receiver
& Error for client to access private member

Class implementation

< Implementation goes in .cpp file
* Must #include class.h file
* Contains code for member functions
* Function name must include class scope (else assumed global function)

/* File: time.cpp */
#include "time.h"

void Time::setHour(int newValue)
{
hour = newValue;

}

string Time::toString(Q
{

return IntegerToString(hour) +
+ IntegerToString(minute);

Implementing member functions Maintaining object consistency

& Members of receiver accessible in member function < Setters can constrain to correct range
void Time::shiftBy (int dh, int dm) { void Time::setHour(int newValue) {
hour += dh; if (newvalue < 1) hour = 1;
minute += dm; else if (newvalue > 12) hour = 12;
} else hour = newValue;
< Can send other messages to receiver }
void Time::shiftBy(int dh, int dm) { void Time::setMinute(int newValue) {
setHour Chour + dh); minute = newValue % 60;
setMinute(minute + dm); }
}

) , . i , & What if data members were public?
& Special variable: this (pointer to receiver) . : .
void Times :shiftByCint dh, nt dw £ ¢ What is advantage of making all access, even within

this->hour += dh; implementation, go through setters?

this->setMinute(minute + dm);

Constructors Add Time constructor

< Special function to init newly created object < Declare constructor in time.h interface
* Data members for new object are uninitialized otherwise (not class Time {
automatically set to zero as in Java) public: .)
. Time(int hr, int min);
¢ Called automatically when declared/allocated void setHour(int newValue);

b
< Implement constructor in time.cpp

Time::Time(int hr, int min) {

* Allocation and initialization go hand-in-hand

< Special prototype

* Must have exact same name as class hour = hr:

= hr;
* No return type minute = min;
* Can have whatever parameters you need i

< Give args to constructor when declaring
Time t(2, 15);

Pestructors

< Special function to clean up object
* Data members may be orphaned otherwise
* Called automatically on delete or exiting scope of object

& Special prototype
* Same name as class prefixed with ~
* No parameters
* No return type

<& Not always needed

* Only if dynamically allocated members to delete, open files to close,
etc.

Basic thoughts on object design

< Never let object get into malformed state
* No public data members
* Correctly initialize all members in constructor
* Only provide setters if needed, be sure properly constrained

< Object is responsible for own behavior

* Interface includes complete set of operations
* Need to print a Time? Add print method to class, don’t pull out the
hour/minute fields and do it yourself

* Same for converting time to string, comparing two times, shifting a time

forward, etc.

Internal vs external representation

& Client might expect Time work in terms of hours

and minutes

* But this is difficult to manipulate internally
* Considering mixing in AM/PM, too

* What is required to shift time or compare?

¢ Consider comparing two Times:
bool Time::isLessThan(Time other) {

return (Chour < other.hour) ||
(hour == other.hour && minute < other.minute);

h
* |s there a better way?

Better representation

< If Time stored in military 24-hour time?
* Somewhat easier to shift, avoids problems with AM/PM

< If internally tracked as minutes since midnight..?
* Trivial to implementation “lessThan” operation
* Trivial to shift, easy to handle wrap around

& Can provide accessor for hour/minute if needed
* Simple to compute from internal representation

< Does changing internal data affect client use!?

* What impact does making things public have on implementation
flexibility?

ADTs (abstract data types)

< Client uses class as abstraction
* Invokes public operations only
* Internal implementation not relevant!
< Client can't and shouldn't muck with internals
* Class data should private
< Imagine a "wall" between client and implementor
* Wall prevents either from getting involved in other's business
* |nterface is the "chink" in the wall
* Conduit allows controlled access between the two
& Consider Lexicon

* Abstraction is a word list, operations to verify word/prefix

* How does it store list? using array? vector? set? does it matter to
client?

