
CS106B Handout 08

Autumn 2012 September 28th, 2012

C++ Strings
Original handout written by Neal Kanodia and Steve Jacobson.

C++ Strings

One of the most useful data types supplied in the C++ libraries is the string. A string is a
variable that stores a sequence of letters or other characters, such as "Hello" or
"May 10th is my birthday!". Just like the other data types, to create a string we
first declare it, then we can store a value in it.

string testString;
testString = "This is a string.";

We can combine these two statements into one line:

string testString = "This is a string.";

Often, we use strings as output, and cout works exactly like one would expect:

cout << testString << endl;

will print the same result as

cout << "This is a string." << endl;

In order to use the string data type, the C++ string header <string> must be included at
the top of the program. Also, you’ll need to include using namespace std; to make
the short name string visible instead of requiring the cumbersome std::string. (As a
side note, std is a C++ namespace for many pieces of functionality that are provided in
standard C++ libraries. For the purposes of this class, you won't need to otherwise know
about namespaces.) Thus, you would have the following #include's in your program in
order to use the string type.

#include <string>
using namespace std;

Basic Operations

Let’s go into specifics about the string manipulations you’ll be doing the most.

Counting the number of characters in a string. The length method returns the number
of characters in a string, including spaces and punctuation. Like many of the string
operations, length is a member function, and we invoke member functions using dot
notation. The string that is the receiver is to the left of the dot, the member function we are
invoking is to the right, (e.g. str.length()). In such an expression, we are requesting
the length from the variable str.

 2

example program:
#include <string>
#include <iostream>
using namespace std;

#include "console.h"

int main() {
 string small, large;
 small = "I am short";
 large = "I, friend, am a long and elaborate string indeed";

 cout << "The short string is " << small.length()
 << " characters." << endl;
 cout << The long string is " << large.length()
 << " characters." << endl;
 return 0;
}

 output:
The short string is 10 characters.
The long string is 48 characters.

Accessing individual characters. Using square brackets, you can access individual
characters within a string as if it’s a char array. Positions within a string str are
numbered from 0 through str.length() - 1. You can read and write to characters
within a string using [].

example program:
#include <string>
#include <iostream>
using namespace std;

#include "console.h"

int main() {
 string test;
 test = "I am Q the omnipot3nt";

 char ch = test[5]; // ch is 'Q'
 test[18] = 'e'; // we correct misspelling of omnipotent

 cout << test << endl;
 cout << "ch = " << ch << endl;
 return 0;
}

 output:

I am Q the omnipotent
ch = Q

Be careful not to access positions outside the bounds of the string. The square bracket
operator is not range-checked and thus reading from or writing to an out-of-bounds index
tends to produce difficult-to-track-down errors. There is an alternate member function

 3

at(int index) that retrieves the character at a position with the benefit of built-in
range-checking, but it’s used much less often.

Passing, returning, assigning strings. C++ strings are designed to behave like ordinary
primitive types with regard to assignment. Assigning one string to another makes a deep
copy of the character sequence.

string str1 = "hello";
string str2 = str1; // makes a new copy
str1[0] = 'y'; // changes str1, but not str2

Passing and returning strings from functions clones the string. If you change a string
parameter within a function, changes are not seen in the calling function unless you have
specifically passed the string by reference (e.g. using that & trick we learned about in the
Queen Safety example.)

Comparing two strings. You can compare two strings for equality using the == and !=
operators. Suppose you ask the user for his or her name. If the user is Julie, the program
prints a warm welcome. If the user is not Neal, the program prints the normal message.
Finally… if the user is Neal, it prints a less enthusiastic response.

example program:
#include <string>
#include <iostream>
using namespace std;

#include "console.h"
#include "simpio.h"

int main() {
 string myName = "Neal";
 while (true) {
 cout << "Enter your name (or 'quit' to exit): ";
 string userName = getLine();
 if (userName == "Julie") {

 cout << "Hi, Julie! Welcome back!" << endl;
 } else if (userName == "quit") {
 // user is sick of entering names, so let's quit
 cout << endl;
 break;
 } else if (userName != myName) {
 // user did not enter quit, Julie, or Neal
 cout << "Hello, " << userName << endl;
 } else {
 cout << "Oh, it’s you, " << myName << endl;
 }
 }
 return 0;
}

 4

output:
Enter your name (or 'quit' to exit): Neal
Oh, it's you, Neal
Enter your name (or 'quit' to exit): Julie
Hi, Julie! Welcome back!
Enter your name (or 'quit' to exit): Leland
Hello, Leland
Enter your name (or 'quit' to exit): quit

You can use <, <=, >, and >= to compare strings as well. These operators compare strings
lexicographically, character by character and are case-sensitive. The following
comparisons all evaluate to true: "A" < "B", "App" < "Apple",
"help" > "hello", "Apple" < "apple". The last one might be a bit confusing, but
the ASCII value for 'A' is 65, and comes before 'a', whose ASCII value is 97. So
"Apple" comes before "apple" (or, for that matter, any other word that starts with a
lower-case letter).

Appending to a string: C++ strings are wondrous things. Suppose you have two strings, s1
and s2 and you want to create a new string of their concatenation. Conveniently, you can
just write s1 + s2, and you’ll get the result you’d expect. Similarly, if you want to append
to the end of string, you can use the += operator. You can append either another string or
a single character to the end of a string.

example program:
#include <string>
#include <iostream>
using namespace std;

#include "console.h"

int main() {
 string firstname = "Leland";
 string lastname = " Stanford";

 string fullname = firstname + lastname; // concat the two strings
 fullname += ", Jr"; // append another string
 fullname += '.'; // append a single char

 cout << firstname << lastname << endl;
 cout << fullname << endl;

 return 0;
}

 output:

Leland Stanford
Leland Stanford, Jr.

 5

More (Less Used) Operations

The string class has many more operations; we’ll show just a few of the more useful ones
below.

Searching within a string. The string member function find is used to search within a
string for a particular string or character. A sample usage such as str.find(key)
searches the receiver string str for the key. The parameter key can either be a string or a
character. (We say the find member function is overloaded to allow more than one
usage). The return value is either the starting position where the key was found or the
constant string::npos which indicates the key was not found.

Occasionally, you’ll want to control what part of the string is searched, such as to find a
second occurrence past the first. There is an optional second integer argument to find
which allows you to specify the starting position; when this argument is not given, 0 is
assumed. Thus, str.find(key, n) starts at position n within str and will attempt to
find key from that point on. The following code should make this slightly clearer:

example program:
#include <string>
#include <iostream>
using namespace std;

#include "console.h"

int main() {
 string sentence = "Yes, we went to Gates after we left the dorm.";

 int firstWe = sentence.find("we"); // finds the first "we"
 int secondWe = sentence.find("we", firstWe + 1); // finds "we" in "went"
 int thirdWe = sentence.find("we", secondWe + 1); // finds the last "we"
 int gPos = sentence.find('G');
 int zPos = sentence.find('Z'); // returns string::npos

 cout << "First we: " << firstWe << endl;
 cout << "Second we: " << secondWe << endl;
 cout << "Third we: " << thirdWe << endl;

 cout << "Is G there? ";

cout << (gPos != string::npos ? "Yes!" : "No!") << endl;
 cout << "Is Z there? ";

cout << (wPos != string::npos ? "Yes!" : "No!") << endl;
 return 0;
}

 output:
First we: 5
Second we: 8
Third we: 28
Is G there? Yes!
Is Z there? No!

Extracting substrings. Sometimes you would like to create new strings by extracting
portions of a larger one. The substr member function creates substrings from pieces of

 6

the receiver string. You specify the starting position and the number of characters. For
example, str.substr(start, length) returns a new string consisting of the
characters from str starting at the position start and continuing for length characters.
Invoking this member function does not change the receiver string, as it makes a new string
with a copy of the characters specified.

example program:
#include <string>
#include <iostream>
using namespace std;

#include "console.h"

int main() {
 string oldSentence;

oldSentence = "The quick brown fox jumped WAY over the lazy dog";
 int len = oldSentence.length();
 cout << "Original sentence: " << oldSentence << endl;
 int found = oldSentence.find("WAY ");
 string newSentence = oldSentence.substr(0, found);
 cout << "Modified sentence: " << newSentence << endl;
 newSentence += oldSentence.substr(found + 4);
 cout << "Completed sentence: " << newSentence << endl;
 return 0;
}

 output:

Original sentence: The quick brown fox jumped WAY over the lazy dog
Modified sentence: The quick brown fox jumped
Completed sentence: The quick brown fox jumped over the lazy dog

There are a couple of special cases for substr(start, length). If start is negative,
it will cause a run-time error. If start is past the end of the string, it will return an empty
string (e.g., ""). If length is longer than the number of characters from the start position
to the end of the string, it truncates to the end of the string. If length is negative, then the
behavior is undefined, so make sure that length is always non-negative. If you leave off
the second argument, the number of characters from the starting position to the end of the
receiver string is assumed.

 7

Modifying a string by inserting and replacing. Finally, let’s cover two other useful member
functions that modify the receiver string. The first, str1.insert(start, str2),
inserts str2 at position start within str1, shifting the remaining characters of str1
over. The second, str1.replace(start, length, str2), removes from str1 a
total of length characters starting at the position start, replacing them with a copy of
str2. It is important to note that these member functions do modify the receiver string.

example program:
#include <string>
#include <iostream>
using namespace std;

#include "console.h"

int main() {
 string sentence = "CS106B sucks.";
 cout << sentence << endl;

 // Insert "kind of" at position 8 in sentence
 sentence.insert(7, "kind of ");
 cout << sentence << endl;

 // Replace the 10 characters "kind of su"
 // with the string "ro" in sentence
 sentence.replace(7, 10, "ro");
 cout << sentence << endl;
 return 0;
}

 output:

CS106B sucks.
CS106B kind of sucks.
CS106B rocks.

Obtaining a C-style char * from a string

Remember, a C++ string is not the same thing as a C-style string (which is merely a
char * pointer to a sequence of characters terminated by a null character '\0').
Although old-style C char * strings and C++ strings can co-exist in a program, almost all
our use will be of C++ strings, since they have a much richer set of operations and are less
error-prone to work with. I say "almost always" because in a few unavoidable situations,
we are forced to use old-style C strings, most notably when working with file streams. We
can convert a C++ string to the old-style representation using the .c_str() member
function. One use we will see of this is to get a char * to pass to the iostream::open
function.

 8

example program:
#include <string>
#include <iostream>
#include <fstream>
using namespace std;

#include "console.h"

int main() {
 ifstream fs;
 string filename = "courseinfo.txt";
 string s;

 // open function requires a C-style string, must convert!
 fs.open(filename.c_str());

 if (fs.fail()) return -1; // could not open the file!

 // process the file

 fs.close();
 return 0;
}

The CS106 Library: strlib.h

In addition to the standard library support for strings, there are a few extensions that the
CS106 libraries provide. To use these functions, the strlib.h library must be
#included.

integerToString, realToString, stringToInteger, stringToReal: Often
your programs will need to convert a string to a number or vice versa. These functions do
just that, with the 'integer' functions operating on int and the 'real' functions on double.

example program:
#include <string>
#include <iostream>
using namespace std;

#include "genlib.h"
#include "strlib.h"

int main() {
 string str1 = "5.6";
 double num = stringToReal(str1);
 string str2 = integerToString(45);

 cout << "The original string is " << str1 << "." << endl;
 cout << "The number is " << num << "." << endl;
 cout << "The new string is " << str2 << "." << endl;
 return 0;
}

 9

output:
The original string is 5.6.
The number is 5.6
The new string is 45.

Any integer or real can be safely converted to a string. However, when converting in the
other direction, if you pass an improperly formatted string to convert to an integer or real,
an error is raised by the conversion functions.

topUpperCase, toLowerCase: These functions take a string, and return a new string
with all letters in lower or upper case respectively. These can be used to change two
strings to a uniform case before comparing to allow a case-insensitive comparison.

example program:
#include <string>
#include <iostream>
using namespace std;

#include "genlib.h"
#include "strlib.h"

int main() {
 string appleFruit = "apples";
 string orangeFruit = "ORANGES";

 cout << "Do " << appleFruit << " come before " << orangeFruit << "? ";
 cout << (appleFruit < orangeFruit ? "Yes!" : "Nope....") << endl;

 string lowerOrangeFruit = toLowerCase(orangeFruit);

 cout << "Do " << appleFruit << " come before " << lowerOrangeFruit << "? ";
 cout << (appleFruit < lowerOrangeFruit ? "Yes!" : "Nope....") << endl;
 return 0;
}

 output:

Do apples come before ORANGES? Nope....
Do apples come before oranges? Yes!

There are a few other functions within the strlib library (equalsIgnoreCase,
startsWith, endsWith, and trim) as well.

