
CS106B Handout 10
Autumn 2012 September 28th, 2012

C++ and CS106 Library Reference
Written by Julie Zelenski and revised by Jerry.

A couple of decent C++ web resources you might want to bookmark:

http://www.cppreference.com
http://www.cplusplus.com/ref/
http://msdn2.microsoft.com/en-us/library/cscc687y.aspx

These can be useful for anything in standard C++, which includes the language itself and
all of its standard libraries (string, stream, ctype, math, etc.) The Stanford-specific
libraries are also documented very nicely, and that documentation can be viewed by
following the CS106B Library Documentation link in the CS106B Resources section of the
course web site.

The standard C++ string class

The string class is defined in <string>. The string type is actually a typedef
shorthand. The underlying full name is

std::basic_string<char, std::char_traits<char>, std::allocator<char>>.

You don’t need to worry about this sort of low-level goop, but you will see the full name in
compiler error messages and will want to recognize it as such.

The default constructor initializes a string variable to the empty string, thus declaring a
string variable ensures that its contents start empty. This is unlike the built-in types (int,
double, etc.) that have random contents until explicitly initialized. Assigning one string to
another via = or passing/returning a string makes a new distinct copy of the same character
sequence. Strings are mutable, unlike Java strings.

A string literal, i.e., sequence of characters within double-quotes such as "binky", is
actually an old-style C-string. You can typically use a C-string wherever a string object is
required since there is an automatic conversion from C-string to new-style C++ string
object. If ever need to force this conversion, you can do so using a syntax similar to a
typecast: string("binky"). This is invoking the string class constructor that takes a
C-string argument.

In general, operations on strings are designed to be very efficient and, as a result, some do
not check parameters for validity. It is the client's job to ensure positions/lengths are in
bounds for calls to substr, find, replace, and so on. The behavior on incorrect calls is
implementation-dependent, but unlikely to be pleasant in any situation.

 2

str.length()
str.size()

Returns number of characters in
receiver string (length and size are
synonyms)

str[index]
str.at(index)

Access character at specified index
in receiver string. Indexes start at 0.
at throws an exception if out of
bounds, operator[] does not bounds-
check (for efficiency).

str.empty() Returns true if receiver string is equal
to "", false otherwise

str1 + str2
str1 + ch

+ is overloaded to allow strings to be
concatenated with other strings and
single chars. The result is a new string
containing concatenation of the
operands.

str.find(key, pos) Searches for key (which can be either
string or single character) within
receiver string, starting search at
index pos. If pos not specified,
default value of 0 is used. Returns
index of key if found or
string::npos otherwise.

str.substr(pos, len) Returns a new string containing len
chars starting from index pos in
receiver string. If len is not given,
takes all characters to end of string.

str.insert(pos, text) Inserts text starting at index pos
into the receiver string. Modifies
receiver string.

str.replace(pos, count, text) Removes count chars from receiver
string starting at index pos, and
replaces with text. Modifies receiver
string.

str1 < str2
== != < > <= >=

String comparison uses standard
relational operators. Ordering is
lexicographic (dictionary ordering)
and case-sensitive.

str.c_str() Returns receiver string in old-style C-
string form. Used when you need
backward compatibility with an older
function.

 3

CS106 string utility functions

strlib.h contains a few conveniences for handling string conversions. These are free
functions (i.e. not member functions invoked on a receiver string).

realToString(d)
stringToReal(str)

Convert double value to string form and vice versa.
stringToReal raises an error if string is not well-
formed.

integerToString(i)
stringToInteger(str)

Convert integer value to string form and vice versa.
stringToInteger raises an error if string is not well-
formed.

toUpperCase(s)
toLowerCase(s)

Returns a new string, which is a copy of input string
where all alphabetic characters have been converted to
upper/lower case equivalents, non-letter characters are
unchanged.

equalsIgnoreCase(s, t) Returns true if and only if s and t are the same string,
minus lowercase/uppercase distinctions. Whereas
"ab" != "AB", equalsIgnoreCase("ab", "AB")
would return true.

startsWith(s, t)
endsWith(s, t)

Returns true if and only if the string s begins with (or
ends with) the string or the character t. So,
startsWith("abc", "ab") would return true,
whereas startsWith("abcdef", "abcf") would
return false.

trim(s) Returns a copy of the string s, except that all leading
and trailing whitespace has been removed.

Standard C++ stream classes

The global streams cin/cout and the basic stream classes are defined in <iostream>.
The file stream classes are defined in <fstream>. There are many variants of stream
classes in the standard library, we typically will use ifstream for input file streams, and
ofstream for output file streams. There are many more features available on streams than
I will list here. I/O isn't particularly interesting to study and we will mostly just use the
simple features, so no need to dig deep.

Like strings, the stream class names are also shortened with a typedef. The full, underlying
name for ifstream is std::basic_ifstream<char, std::char_traits<char>>
and ofstream is same with ofstream substituted for ifstream.

Copying of stream objects is discouraged. Streams should typically be passed by reference.
In most library implementations, copying a stream (either from direct assignment or pass-
by-value) is specifically disallowed and will not compile.

 4

These member functions apply to both input and output streams:

stream.open(filenameAsCString)

Opens named file and attaches to
receiver stream. If unsuccessful, sets
stream error state. The filename
parameter is expected to be an old-
style C-string! (see c_str above for
how to convert a C++ string to C-
string)

stream.close() Closes file. This is automatically done
by stream destructor, but if you open
another file on the stream, you first
explicitly close any open one.

stream.fail() Returns true if the receiver stream is
in an error state, e.g a previous stream
operation was not successful. Once a
stream gets into an error state, the
error state persists and no further
operations on that stream can
succeed until the error state is cleared
(see clear below)

stream.clear() Clears error state of the receiver
stream

These operations are specific to output streams.

ostream << num << str << ch Stream insertion << does formatted
output. See <iomanip> for all the
fancy features for controlling
width/precision/alignment/format.

ostream.put(ch) Outputs a single char onto receiver
stream

These operations are specific to input streams.

istream >> num >> str >> ch Stream extraction >> reads formatted
input. By default, skips white space.
Puts stream into fail state if read
doesn't match expected.

istream.peek()
istream.get()

Read next character from receiver
stream. Return EOF (–1) if no more
characters to read. Returns an int
rather than char because of need to
represent EOF. peek returns the next
character but doesn't remove it from
the stream

 5

istream.unget() Pushes last character read back onto
the receiver stream

getline(istream & in, string & str,
 char delimiter = '\n')

Reads next line of input (up to
delimiter) and stores in str
reference parameter. Note: this is a
free function not a stream member
function! You pass the stream to read
from as the first argument.

CS106 simple input functions

Handling user input can be a little messy (i.e. retrying on errors, etc.), so these simplified
input routines are provided in our simpio.h to make your life a little easier. These are
supplied as free functions.

string getLine(prompt)
int getInteger(prompt)
long getLong(prompt)
double getReal(prompt)

Each prompts the user with the
specified prompt, reads a line of
input from the user and returns the
value. In case of the numeric
versions, if user's input is not well-
formed, re-prompts and tries again
until input is valid. The prompt may
be omitted if no prompt is needed.

CS106 random library

random.h contains a set of functions that generate pseudo-random events. The
implementation is layered on top of the standard C functions rand/srand from
<cstdlib>.

void setRandomSeed(seed) Seeds random number generator.
int randomInteger(low, high)
double randomReal(low, high)

Returns int/real from random range.

bool randomChance(probability) Returns true/false based on
random probability.

Advanced Libraries

There are more advanced libraries that aren’t being outlined here, because we’ll be
learning them piecemeal over the course of the next several weeks.

