
CS106B Handout 11

Autumn 2012 October 1st, 2012

Section Handout

This first week, I’m only including two problems, because introductions might take 15 or so
of the 50 minutes we have. One of the problems is a discussion problem, and the other is
written up as an informal coding exercise. However, I’ll always allow your section leader
and your peers to decide if you’d rather adopt the collaborative discussion-problem format
for both of them.

Discussion Problem 1: Publishing Stories

Social networking sites like Facebook, LinkedIn, and Google+ typically record and publish
stories about actions taken by you and your friends. Stories like:

 Jessie Duan accepted your friend request.
 Matt Anderson is listening to Green Day on Spotify.
 Patrick Costello wrote a note called "Because Faiz told me to".
 David Wang commented on Jeffrey Spehar’s status.
 Mike Vernal gave The French Laundry a 5-star review.

are created from story templates like

 {name} accepted your friend request.
 {name} is listening to {band} on {application}.
 {name} wrote a note called "{title}".
 {name} commented on {target}’s status.
 {actor} gave {restaurant} a {rating}-star review.

The specific story is generated from the skeletal one by replacing the tokens—substrings
like "{name}", "{title}", and "{rating}"—with event-specific values, like
"Jessie Duan", "Because Faiz told me to", and "5". The token-value pairs
can be packaged in a Map<string, string>, and given a story template and a data
map, it’s possible to generate an actual story.

 2

Write the generateStory function, which accepts a story template (like
"{actor} gave {restaurant} a {rating}-star review.") and a
Map<string, string> (which might map "actor" to "Mike Vernal",
"restaurant" to "The French Laundry", and "rating" to "5"), and builds a
string just like the story template, except the tokens have been replaced by the text they
map to.

Assume the following is true:

 '{' and '}' exist to delimit token names, but won’t appear anywhere else. In other

words, if you encounter the '{' character, you can assume it marks the beginning of a
token that ends with a '}'.

 We guarantee that all tokens are in the Map<string, string>. You don’t need to
do any error checking.

The prototype is:

string generateStory(string storyTemplate, Map<string, string>& data);

Lab Problem 1: Keith Numbers

A Keith number is any n-digit number that appears in the Fibonacci-like sequence that
starts off with the number’s n digits and then continues such that each subsequent number
is the sum of the preceding n.

All of the one digit numbers are—trivially so—Keith numbers.

The number 7385 is more interesting. It’s a Keith number, because the following sequence
says so:

7, 3, 8, 5, 23, 39, 75, 142, 279, 535, 1031, 1987, 3832, 7385

The sequence starts out 7, 3, 8, 5, because those are the digits making up 7385. Each
number after the 5 is the sum of the four numbers that precede it (four, because 7385 has
four digits). The fact that 7385—the number whose digits spawned it all—happens to be in
the sequence is the happy accident that tells us it’s a Keith number.

For this exercise, you should write a program that prints out all of the Keith numbers
between 1 and 10000, inclusive, and for each also print out the Fibonacci-like sequence
that proves it’s Keith.

 3

The meat of your program’s output should basically be this:

1: [1]
2: [2]
3: [3]
4: [4]
5: [5]
6: [6]
7: [7]
8: [8]
9: [9]
14: [1, 4, 5, 9, 14]
19: [1, 9, 10, 19]
28: [2, 8, 10, 18, 28]
47: [4, 7, 11, 18, 29, 47]
61: [6, 1, 7, 8, 15, 23, 38, 61]
75: [7, 5, 12, 17, 29, 46, 75]
197: [1, 9, 7, 17, 33, 57, 107, 197]
742: [7, 4, 2, 13, 19, 34, 66, 119, 219, 404, 742]
1104: [1, 1, 0, 4, 6, 11, 21, 42, 80, 154, 297, 573, 1104]
1537: [1, 5, 3, 7, 16, 31, 57, 111, 215, 414, 797, 1537]
2208: [2, 2, 0, 8, 12, 22, 42, 84, 160, 308, 594, 1146, 2208]
2580: [2, 5, 8, 0, 15, 28, 51, 94, 188, 361, 694, 1337, 2580]
3684: [3, 6, 8, 4, 21, 39, 72, 136, 268, 515, 991, 1910, 3684]
4788: [4, 7, 8, 8, 27, 50, 93, 178, 348, 669, 1288, 2483, 4788]
7385: [7, 3, 8, 5, 23, 39, 75, 142, 279, 535, 1031, 1987, 3832, 7385]
7647: [7, 6, 4, 7, 24, 41, 76, 148, 289, 554, 1067, 2058, 3968, 7647]
7909: [7, 9, 0, 9, 25, 43, 77, 154, 299, 573, 1103, 2129, 4104, 7909]

Of course, you shouldn’t actually print this verbatim, but instead include the logic needed
to generate these numbers. You should be able to change the range of interest—perhaps
from [1, 10000] to [10, 10000000]—and have the program still work.

The starter file for this—cleverly named keith-numbers.cpp—actually prints out all
numbers between 1 and 10000, inclusive. You should update the program to identify
which numbers are Keith and print just them.

