CS106B Handout 12
Autumn 2012 October 3™, 2012

Maps, Lexicons, and Sets

Written by Julie Zelenski and Jerry Cain.

All of the containers we've studied so far—Vector, Grid, Queue, Stack—are examples
of sequential containers. They’re sequential in the sense that the client has complete or
near complete control over the order in which the items are stored. Our Map template, on
the other hand, is an example of an associative container: We control how we associate
keys with values, but have less control over how the key-value pairs are stored.

Map Primer

template <typename K, typename V>
class Map {

public:
Map();
~Map();

bool isEmpty();
int size();

void put(K key, V value);
bool containsKey (K key)
V get(K key);

V& operator[] (K key);
void remove (K key);

}i

Our Map—the one defined in the CS106 libraries—operates much like the Java HashMap,
although there are some key differences:

o The second template parameter can be set to virtually anything at all, but the first
template parameter must respond to infix <. Primitive types like int and double,
of course, can be compared using <, so they’re perfectly acceptable Key types. And
the C++ string, even though it’s a class, responds to infix <, so you'll often see
string used as keys as well. In the rare situation where you’d like to key your Map
on a custom data type, your custom data type needs to define < (via operator<).
We’'ll soon see how to do that.

o The get method returns a copy of the value attached to the provided key, but
operator[] returns a reference to the associated value. The latter method
overloads array indexing so that statements like sunetIDs.put (4041554,
"poohbear") and sunetIDs[4041554] = "poohbear" do the same thing
(the motivation being that array notation supports traditional assignment via
operator=, and is therefore easier to understand.) The distinction with
operator[]—which is the method the Map class must implement to overload the

2

meaning of []—is a subtle one, in that it returns a reference to the very string
behind the scenes where "poohbear" should be assigned.

o The get method returns the V ‘s default value if the key isn’t present (and that
default value is 0, 0.0, false, '\0' for primitives, and default-constructed objects
for classes). If the default value can’t be uniformly treated as a sentinel—that is, a if
a return value of 0 doesn’t tell you whether the key is present or absent, you might
guard against the call to get by first calling containsKey. operator[] operates
much the same way when the supplied key is missing. More details soon.

Here is a simple function that compiles a histogram of all the words appearing in the
referenced ifstream and stores those words and their frequencies in the referenced Map:

static void compileWordCounts(Map<string, int>& map, ifstream& infile) {
while (true) {

string word;

infile >> word; // skips whitespace

if (infile.fail()) break;

if (map.containsKey(word)) // if we'’ve seen this word
map.put(word, map.get(word) + 1); // incr value by 1, update

else
map.put(word, 1); // add first occurrence of this word

}

cout << "Found " << map.size() << " unique words." << endl;

}

The above intentionally avoids the use of array notation so you understand how to code
without it. But because the Map overloads [1, it’s possible to rewrite countWordsInFile
this way:

static void countWordsInFile(Map<string, int>& map, ifstream& infile) {
while (true) {
string word;
infile >> word;

if (infile.fail()) break;
map[word]++;
}
cout << "Found " << map.size() << " unique words." << endl;

}

When word already appears in map, ++ is levied directly against a reference to the relevant
value. Even though we don’t know where the associated value lives, we’re momentarily
granted access to it, through a reference, so that we can increment it in place without any
copying or reinsertion.

When a word is encountered for the very first time, there is, of course, no entry in the map.
If operator[] notices that the supplied key isn’t present, it creates an entry for that key,
maps it to a default-constructed value (in this case, a 0) and returns a reference to that 0.

3

Execution then proceeds as if the key were present all along, and the ++ would promote
the newborn 0 to a 1. That’s what we want to happen.

Map Iteration

It's easy to lookup a value if we know the key, but nothing we’ve discussed so far allows us
to iterate over all of a Map’s key-value pairs. Fortunately, the Map class defines some
additional directives so that it plays well with the foreach construct we’ve defined in our
CS106 libraries. If, for instance, we need to publish the contents of our frequency map, as
compiled by the countWordInFile function above, to a text file, we could do this:

static void publishMapToFile(Map<string, int>& map, ofstream& outfile) {
foreach (string key in map) {
outfile << key << ": " << map[key] << endl;

}

As far as examples go, it’s a pretty short one, but it illustrates the general idiom you’ll use
from time to time when you need to search or other access the data within a Map when the
search can’t be framed in terms of a specific key. If, for instance, you need to search the
same Map to return all those words that appear a certain number of times or more, you
might go with the following:

static Vector<string> getCommonWords(Map<string, int>& map, int threshold) {
Vector<string> commonWords;
foreach (string key in map) {
if (map[key] >= threshold)
commonWords.add (key);

}

return commonWords;

One feature of Map iteration worth mentioning: Iteration visits the keys in natural
increasing order. The Map relies on the key’s behavior around < to internally organize
key/value pairs, and a nice side effect of that organization is that keys are surfaced in
natural order (increasing order for numbers, in lexicographical order for strings, etc.)
during iteration.

Larger Example: Precompiling Anagram Sets

Here’s a larger example (courtesy of Keith Schwarz) that uses a Map to partition all of the
English words into sets—where each set contains those words that are anagrams of one
another. And because all words in any given anagram set have the same letter distribution,
we elect to key these sets on the sorted character distribution, also expressed as a string.
The process of compiling the anagram information will reveal, for example, that
"nastier" and "retinas" are in the same set, and the Vector<string> containing
both will be keyed by "aeinrst".

4

The program | have in mind is console-based, and interacts with the user is a way that’s
consistent with the following output:

Grouping all words that are anagrams of one another... [done]
Enter some characters [or just hit return to quit]: retains
Anagrams of "retains":

"anestri"
"nastier"
"ratines"
"retains"
"retinas"
"retsina"
"stainer"
"stearin"

OO0 WN
.
—_— — — — — — ~— ~—

Enter some characters [or just hit return to quit]: insert
Anagrams of "insert":

"estrin"
"inerts"
"insert"
"inters"
"niters"
"nitres"
"sinter"
"triens"
"trines"

WoJouUud WwWwbN -
.
—_— =~ — — ~—

Enter some characters [or just hit return to quit]: preamble
Anagrams of "preamble':

l1.) "preamble"

Enter some characters [or Jjust hit return to quit]: trace
Anagrams of "trace":

"caret"
"carte"
"cater"
"crate"
"react"
"recta"
"trace"

~NoOon s WP
.
~— — — — — — ~—

There are a few ways to implement this. My approach here is to pre-compute all anagram
classes, catalog them into a Map<string, Vector<string> >, and then consult this
Map as the user enters words like "insert", "preamble", and "trace".

Let’s first concern ourselves with the population of the Map. Here’s my
compileAnagramMap function, which accepts a reference to a presumably empty Map
and iterates over a Lexicon of all of the English words. Each word is marshaled and
appended to the correct Vector<string> value, the key of which is produced by a
helper routine called characterSort, which is really just a selection sort on strings—

5

e.g. characterSort ("nastier") and characterSort ("retinas") each return
"aeinrst".

static string characterSort(string word) {
for (int 1lh = 0; 1lh < word.size(); lh++) {
int smallest = lh;

for (int rh = 1h + 1; rh < word.size(); rh++) {
if (word[rh] < word[smallest])
smallest = rh;

}
swap(word[lh], word[smallest]); // swap is in <algorithm>

}

return word;

}

static void compileAnagramMap(Map<string, Vector<string> >& anagrams) {
cout << "Grouping all words that are anagrams of one another... ";
Lexicon english("EnglishWords.dat");
foreach (string word in english) {
string key = characterSort(word);
anagrams[key].add(word);

}

cout << "[done]" << endl;

You'll notice I’'m relying on a Lexicon class, even though this is the first you're seeing it.
Fortunately, the Lexicon class is trivial, and you can intuit how one interacts with a
Lexicon (exported by "lexicon.h") by just looking at some code that uses it. (One
note: one can foreach over the words in the Lexicon, and doing so surfaces all of its
words in alphabetical order. The data structure backing the Lexicon is a fascinating one,
and we'll discuss its implementation in a few weeks.)

The code that prompts the user to enter a collection of characters (English word or not) and
retrieve anagrams is more straightforward:

static void printAnagrams(string letters, Vector<string>& anagrams) {

cout << "Anagrams of \"" << letters << "\":" << endl << endl;
for (int i = 0; i < anagrams.size(); i++) {

cout << " " << (1 4+ 1) << ".) \"" << anagrams[i] << "\"" << endl;
}

cout << endl;

}

static void queryAnagramMap(Map<string, Vector<string> >& anagrams) {
while (true) {
string letters = trim(
getLine("Enter some characters [or just hit return to quit]: "));
if (letters.empty()) return;
string key = characterSort(letters);
if (anagrams.containsKey(key)) {
printAnagrams(letters, anagrams[key]);
} else {

6

cout << "There are no anagrams of \ << letters << "\"" << endl;

And, as was the case with the queen-safety example, we declare the master copy of
our data structure—in this case a Map<string, Vector<string> >—inthemain
function, and share a reference to that master copy with each of compileAnagramMap
and queryAnagramMap.

int main() {
Map<string, Vector<string> > anagrams;
compileAnagramMap (anagrams) ;
queryAnagramMap (anagrams) ;
return 0;

}

As an added exercise, if we'd like to identify the largest anagram set, we can just foreach
over the keys of the map, keeping track of the largest set ever encountered along the way. If
there are multiple largest sets, we can return any single one of them.

static Vector<string>
getLargestAnagramSet (Map<string, Vector<string> >& anagrams) {
Vector<string> largestAnagramSet;
foreach (string key in anagrams) {
if (anagrams[key].size() > largestAnagramSet.size()) {
largestAnagramSet = anagrams[key];

}
}
return largestAnagramSet;
}
Set Primer

The only significant container class left to discuss is the Set, which does its darndest to
emulate the notion of a mathematical set. On the one hand, the Set is like a Map with
keys but no companion values, and that analogy gets you very far. But it also overloads
some common operators (+, =, *, +=, ==, *=) to support set addition, union, subtraction,
and intersection. The Set, like the mathematical set, is unordered and doesn’t allow
duplicates. Since it doesn’t need to preserve an order, it’s free to impose one and store our
elements in such a way that insertion, deletion, and search can run very, very quickly.

Like the Map, the Set requires its keys cooperate when compared to each other using <.
Iteration is supported via foreach, and the Set’s members are presented in logically
increasing order (again, not because it’s required to, but because it’s electing to.)

Here is the condensed interface for the Set template:

template <typename T>
class Set {

public:
Set();
~Set();

bool isEmpty();
int size();

void add(T elem);

void remove(T elem);

bool contains(T elem);

bool isSubsetOf(Set& other);

Set operator+(T elem)

Set operator+(Set& other);
Set operator*(Set& other);
Set operator-(T elem);

Set operator-(Set& other);
Set& operator+=(T elem);
Set& operator+=(Set& other);
Set& operator*=(Set& other);
Set& operator—(T elem);
Set& operator-=(Set& elem);

}i

Don’t let the syntax in place to overload +, +=, and so forth intimidate you. The syntax is
just quirky C++ needed to overload operators to work on custom data types. As you study
the forthcoming examples, you’ll come to understand that the operators are just a clean,
intuitive way to express set union, intersection, and subtraction.

Set Primer: Happy Numbers

Let’s use a Set to determine whether a number is happy. In recreational mathematics, a
number is happy if zero or more manipulations of its digits eventually generate a 1. If a
number is 1, then it's happy. Otherwise, a number is happy if the sum of the squares of its
digits is itself a happy number.

For example, 44 is happy, as the associated sequence demonstrating happiness is:

42+ 4*=32
32+22=13
17+3=10
17+0°=1

Similarly, 139 is happy because

12+32+92=91
9 + 12 = 82

8 +2° = 68
6> +8°=100
127+0°+0°=1

And lest you believe all numbers are happy, consider the number 4:

4> =16
12+ 6>=37
324+72=58
52 +8°=289
8%+ 92 =145
17 +4°+52=42
4> +22=20
22+0°=4

The digit manipulation of 4 leads through a collection of mutually unhappy numbers
whose own digit manipulations leads back to the original 4. These numbers are
collectively trapped in a cycle of misery, and are all unhappy numbers.

We can leverage the above and use the CS106 Set to help identify integer happiness.
Here we go:

static int computeSquareOfDigitSum(int n) {
int sum = 0;
while (n > 0) {
int digit = n % 10;
sum += digit * digit;
n /= 10;
}

return sum;

}

static bool isHappy(int n) {
if (n <= 0) return false; // how can negative numbers be happy?

Set<int> previouslySeen;

while (n > 1 && !previouslySeen.contains(n)) {
previouslySeen.add(n);
n = computeSquareOfDigitSum(n);

}

return n == 1;

}

The above implementation assumes that every number, when manipulated as described,

eventually leads to 1 if it doesn’t get trapped in a cycle like the one we saw with the
number 4.

9

As it turns out, all unhappy numbers are eventually led into the above cycle of unhappiness
(according to a http://mathworld.wolfram.com/HappyNumber.html). An
alternate implementation would just collect all of the base numbers that inform us of a
number’s happiness into a Set. We can manipulate the original number and its successors
as needed, knowing they’ll eventually lead to either a 1 or one of the numbers in the
unhappy number cycle. This second version illustrates a slick use of the += operator and
the fact that the comma operator is lower precedence and evaluated from left to right:

static bool isHappy(int n) {
if (n <= 0) return false;
Set<int> endpoints;
endpoints += 1, 4, 16, 37, 58, 89, 145, 42, 20;
while (!endpoints.contains(n)) {
n = computeSquareOfDigitSum(n);

}

return == 1;

}

The endpoints += 1, 4, 16, 37, 58, 89, 145, 42, 20; line a shorthand that
populates a Set with a small number of explicitly listed entries. Save for the 1, all of the
numbers are those contained in the unhappy number loop. Our approach here is to just
transform the current number over and over until it becomes some number in held by
endpoints. Then we know the number is happy if and only if it evolved into a 1.

Larger Example: Generating Farey Series
The Farey series of order n, denoted by F,, is the sorted sequence consisting of all reduced

fractions between 0 and 1 with denominators less than or equal to n. The Farey series of
order 6, for example, is

We can model a fraction with a simple record type (using the struct keyword) as follows:

struct fraction {
int numerator;
int denominator;

}i

In C++, records are like classes in that they aggregate related information to help model a

more complex type. The one key difference is that everything within a struct definition
is public, whereas everything within a class is private unless exposed via the public
access modifier. We'll have much more to say about records and classes in a few weeks,

but this examples calls for a crash course in the record and how to define one.

10

Let’s implement

Vector<fraction> generateFareySeries(int n);.

We'll add all relevant £fractions to a Set<fraction>, and then iterate over it to
construct a sorted Vector<fraction> with exactly the same information.

For this to work, we need to overload operator< to work with £ractions. Because the
fraction is a custom data type, there’s no way support for <. We can, however, define it
ourselves.

We need to make use of a rule we all learned in 7" grade:

% is less than % if and only if ad is less than bc

We overload < by defining a top-level operator< function that looks like this:

static bool operator<(const fraction& one, const fraction& two) {
return one.numerator * two.denominator < two.numerator * one.denominator;

}

The function defining a new flavor of < must be called operator<, must take two
arguments, and should return a bool. Note that we accept references to fractions!
fractions are large enough that we shouldn’t make deep copies of them. And we mark
the fractions as const to ensure operator< won't change the fractions being
shared with them. (The const and the & are technically optional, but good programming
practice, and professional C++ programmers would use both here.)

While we’re overloading operators, | confess that it’s also possible to overload << so we
can print fractions just as we print ints and strings. Those who designed C++
wanted developers to be able to integrate their own types into the language as fully as
possible, which is why C++ supports operator overloading to the extent that it does.

The implementation of operator<< looks like this:

static ostream& operator<<(ostream& os, const fraction& f) {
os << f.numerator; // assume for our example that fractions are positive
if (f.denominator > 1) {
os << "/" << f.denominator;

}

return os;

The prototype, if it's to print fractions at all, must have this prototype. The ostream&
return value is required if we're to be able to daisy chain calls to <<, as with:

11

fraction pi = { 22, 7 };
cout << "The constant pi is equal to

<< pi << "." << endl;

Our implementation constructs all fractions (with a denominator of n or less) between 0
and 1—both reduced and unreduced—and inserts them in such an order that only the
reduced fractions remain. One subtle feature of the Set’s add, operator+ and
operator+= operations is that requests to insert a previously inserted item are ignored.
So, if you insert 2/3 first and 4/6 later, the request to insert 4/6 is rejected.

Vector<fraction> generateFareySeries(int n) {
Set<fraction> fractions;

for (int denominator = 1; denominator <= n; denominator++) {
for (int numerator = 1; numerator < denominator; numerator++) {
fraction £ = { numerator, denominator };

fractions += f; // could have called add, but illustrating += instead

}

Vector<fraction> series;
foreach (fraction f in fractions) series.add(f);
return series;

}

A simple possible test framework might looks like this:

int main() {
for (int n = 1; n <= 6; n++) {
cout << "F(" << n << ") is ";
cout << generateFareySeries(n) << endl;
}
return 0;

}

main’s output is always:

F(1) is {}

F(2) is {1/2}

F(3) is {1/3, 1/2, 2/3}

F(4) is {1/4, 1/3, 1/2, 2/3, 3/4}

F(5) is {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}

F(6) is {1/6, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6}

(Our Vector template can be printed in its entirety using <<, and the implementation of
operator<< relevant to Vector<fraction> itself relies on the operator<< presented
earlier.)

12

Maps and Sets Combined: Twitter and Hashtags [courtesy of Aubrey Gress]

Twitter is a social networking and micro-blogging service where users produce and
consume tweets—short text messages of up to 140 characters. By default, tweets are
public, and people can subscribe to the tweets of specific users by following them. Tweets
are (or at least can be) syndicated as text messages to the cell phones of the one’s
followers, and the accumulation of all tweets appears in a live stream at
http://www.twitter.com.

Here are some random tweets drawn from www. twitter.com last night and this
morning:

®* Sometimes it lasts in love, but sometimes it hurts instead # Adele

® We should be taking bets on how soon #Obama mentions Bush or makes inferences toward the
former # POTUS in tomorrow night's # DenverDebate

* first week of classes at Stanford, and 700+ students are enrolled in introductory computer
science. #cs106a. Congrats to Stanford CS!

® Isthe #Tesla Model S the new Model T? http:/ /nyti.ms/POKLV6

® So energizing to meet smart people at #Stanford, and journalists like @eleanorhalll. Do I have to go
home?

* This weekend is going to be # weekendmaggedon in SF. #HSB #litquake #fleetweek #decompression
#americascup #whiskeyfest & #yourfriendswedding

* Under Pres Obama 27 million Americans still uninsured by 2022 -- Under #Romney 72 million
uninsured by 2022. Who's plan wld you choose?

Related tweets can be grouped by topic using hashtags—tokens of purely alphanumeric
text prefixed by a '#'. One can then search Twitter for a given hashtag and be given a list
of all tweets including it. Tweets can, and often do, include several hashtags.

Given a sequence of recent tweets, we want to implement the getPopularHashtags
functions, which builds and returns a Map associating hashtags (with their leading #s) to all
of the tweets (with hashtags) that include them. The Map we'll return will only include
hashtags appearing in at least minTweets distinct tweets (which might be a threshold that
if matched or exceeded suggests that a particular topic is trending.)

static Vector<string> explode(string str, char delim) {
Vector<string> boom;
string cluster;
str += delim; // last cluster gets appended w/ minimal special casing

for (int i = 0; i < str.size(); i++) {
if (str[i] == delim) {
boom.add(cluster);
cluster.clear(); // cluster =
} else {
cluster += str[i];

works, too

}
}

return boom;

static string extractHashTag(string fragment) {
int pos = 1;
while (pos < fragment.size() && isalnum(fragment[pos])) pos++;
return '#' + fragment.substr(0, pos);

}

static Set<string> extractHashTags(string tweet) {
Set<string> hashTags;
Vector<string> fragments = explode(toLowerCase(tweet), '#');
for (int i = 1; i < fragments.size(); i++) {
if (!fragments[i].empty() && isalnum(fragments[i][0])) {
hashTags.add(extractHashTag(fragments[i]));
}
}

return hashTags;

}

static Map<string, Vector<string> >
getPopularHashtags(Vector<string>& tweets, int minTweets) {
Map<string, Vector<string> > allHashTags;
for (int i = 0; i < tweets.size(); i++) {
Set<string> hashTags = extractHashTags(tweets[i]);
foreach (string hashTag in hashTags) {
allHashTags[hashTag].add(tweets[i]);

}
}

Map<string, Vector<string> > popularHashTags;
foreach (string hashTag in allHashTags) {
if (allHashTags[hashTag].size() >= minTweets) {
popularHashTags[hashTag] = allHashTags[hashTag];

}
}

return popularHashTags;

13

