
CS106B Handout 15

Autumn 2012 October 8th, 2012

Section Handout

Discussion Problem 1: Chain Reactions

Chain Reaction is a popular one-player game that recently made its way through the
Internet and various mobile platforms. In our version, we’ve given a collection of
locations—GPoints in the plane—of land mines. The detonation of any single land mine
prompts all land mines within a certain distance to simultaneously detonate a second later,
which themselves set off more land mines another second later, and so forth. The chain
reaction continues until there are no active land mines, or until none of the remaining land
mines fall within the threshold distance of those that’ve already exploded.

• You get 0 points for the land mine you initially [and manually] detonate.
• You get 100 points for each land mine that detonates at the one-second mark.
• You get 400 points for each land mine that detonates at the two-second mark.
• You get 900 points for each land mine that detonates at the three-second mark.
• In general, you get 100n2 points for each land mine that detonates at the n-second

mark.

Implement the computeAllScores function, which accepts a reference to a
Set<GPoint> of all the land mine locations, and populates the referenced
Map<GPoint, int>—assumed to be empty as computeAllScores is called—with the
score attained by manually detonating the land mine at each of the locations. Specifically,
each GPoint in the Map<GPoint, int> should map to the score one would get by
detonating it before all others. For simplicity, assume that operator< has already been
defined so that GPoints can be stored as keys in Maps and as entries in Sets.

static void computeAllScores(const Set<GPoint>& landMines,
 Map<GPoint, int>& scores);

Further assume that the following convenience function—the predicate function that
determines if one mine is close enough to a second to detonate it one second later—has
been provided as well.

const static double kThresholdDistance = 50;
static bool isInRange(const GPoint& base, const GPoint& target) {
 double dx = base.getX() - target.getX();
 double dy = base.getY() - target.getY();
 return dx * dx + dy * dy <= kThresholdDistance * kThresholdDistance;
}

 2

Discussion Problem 2: GCD [CS106B Reader, Chapter 7, Problem 4]

The greatest common divisor (often abbreviated to gcd) of two nonnegative integers is the
largest integer that divides evenly into both. In the third century BCE, the Greek
mathematician Euclid discovered that the greatest common divisor of x and y can always
be computed as follows:

• If x is evenly divisible by y, then y is the greatest common divisor.
• Otherwise, the greatest common divisor of x and y is always equal to the greatest

common divisor of y and the remainder of x divided by y.

Use Euclid’s insight to write a recursive function gcd that computes the greatest common
divisor of x and y.

Discussion Problem 3: Twiddles

Two English words are considered twiddles if the letters at each position are either the
same, neighboring letters, or next-to-neighboring letters. For instance, sparks and
snarls are twiddles. Their second and second-to-last characters are different, but p is just
two past n in the alphabet, and k comes just before l. A more dramatic example: craggy
and eschew. They have no letters in common, but craggy’s c, r, a, g, g, and y are -2,
-1, -2, -1, 2, and 2 away from the e, s, c, h, e, and w in eschew. And just to be clear, a
and z are not next to each other in the alphabet—there’s no wrapping around at all.

Implement a recursive procedure called listTwiddles, which accepts a reference to a
string str and a reference to an English language Lexicon, and prints out all those
English words that just happen to be str’s twiddles. You’ll probably want to write a
wrapper function. (Note: any word is considered to be a twiddle of itself, so it’s okay to
print it.)

static void listTwiddles(const string& str, const Lexicon& lex);

Lab Problem 1: Letter Rectangles and Words

You are given a large collection of short, fat rectangles, where each half of each rectangle
contains a single letter, as with:

Given the option to rearrange, ignore, and rotate pieces, you’re charged with the task of
identifying all of the even-length English words that can be formed by chaining together
some subset of the pieces (where some may have been rotated). For the above set of
pieces, the list of printed words should surely include "plum", since the third-to-last
rectangle can be placed after the second-to-last rectangle (rotated so that the 'p' precede
the 'l') to form "plum". Given the above set of rectangles, you should also identify fun

l e s c r k s e l e u m l p a l b r

 3

words like "allele", "lark", "muscle", "scales", and "umbrella", in addition to
quite a few others. Note that each rectangle can be used at most one time per word, so
that words like "sees" and "museum" can’t be formed.

Using the lab starter files up on the course web site, work in pairs (and get help as needed)
to implement the recursive function gatherWords, which accepts references to a
Vector<string> called rects (where each string is two characters), a Lexicon
constant called english, and an initially empty Lexicon called words, and populates
words with the collection of those words, and only those words, that can be formed using
the rectangles in rects. You should implement this using a wrapper function.

static void gatherWords(const Vector<string>& rects,
 const Lexicon& english, Lexicon& words);

