
CS106B Handout 15S

Autumn 2012 October 10th – 12th, 2012

Section Solution

Discussion Problem 1 Solution: Chain Reactions

This was one last problem to exercise your understanding of Maps and Sets, and in
particular, the set union, intersection, and subtraction operations that come via +, -, and *.
This was a final exam question of mine some three years ago.

This first function was given to you in the handout, as it’s algorithmically straightforward. It
answers the question as to whether or not an exploding mine—the one referenced by
base—can detonate a second mine—referenced by target. (By the way, we use
GPoints from "gtypes.h" to model the locations of land mines, because a full
implementation would need to render land mines in a graphics window anyway, and those
renderings would need to be framed in terms of GPoints.)

const static double kThresholdDistance = 50;
static bool isInRange(const GPoint& base, const GPoint& target) {
 double dx = base.getX() - target.getX();
 double dy = base.getY() - target.getY();
 return dx * dx + dy * dy <= kThresholdDistance * kThresholdDistance;
}

The function you’re responsible for needs to add a GPoint to the scores map for every
GPoint that appears in the landMines set. The only way to reach all entries in a set is to
use our foreach construct. On behalf of each GPoint in landMines, we compute the
score achieved by manually detonating the mine at that location and simulating the chain
reaction of detonations that stem from it.

static void computeAllScores(const Set<GPoint>& landMines,
 Map<GPoint, int>& scores) {
 foreach (GPoint landMine in landMines) {
 scores[landMine] = computeScore(landMine, landMines);
 }
}

Of course, the interesting work comes with computeScore, which identifies all land
mines that detonate at the one-second mark, and then all land mines that detonate at the
two-second mark, and so on, until no more mines explode, all the while keeping tabs on
how many points the chain reaction of detonations gets you.

 2

static int computeScore(const GPoint& init, const Set<GPoint>& landMines) {

 int second = 0;
 int totalScore = 0;
 Set<GPoint> notYetExploded = landMines;
 notYetExploded -= init; // not exploding now, but they may eventually
 Set<GPoint> currentlyExploding;
 currentlyExploding += init; // at the outset, only init detonates

 while (!currentlyExploding.isEmpty()) {
 int score = 100 * second * second;
 totalScore += currentlyExploding.size() * score;
 Set<GPoint> soonExploding;
 foreach (GPoint explodingLocation in currentlyExploding) {
 foreach (GPoint potentialLocation in notYetExploded) {
 if (isInRange(explodingLocation, potentialLocation)) {
 soonExploding += potentialLocation;
 }
 }
 }

 notYetExploded -= soonExploding;
 currentlyExploding = soonExploding;
 second++;
 }

 return totalScore;
}

Discussion Problem 2 Solution: GCD

This algorithm—which was presented in iterative form in Section 2.2 of the reader—can be
formulated recursively as well. Because the implementation is so short, you might trace
through calls to gcd(12, 114), gcd(114, 12), and gcd(1001, 200) so you trust that
it works. We won’t always be able to trace through a recursive implementation, but when
we can, it’s a perfectly good way to confirm it’s operational.

static int gcd(int x, int y) {
 if (x % y == 0) return y;
 return gcd(y, x % y); // argument order is important here
}

Discussion Problem 3 Solution: Twiddles

This problem is substantially more difficult that the preceding one, because the recursive
substructure isn’t nearly as obvious (and it isn’t explained in the problem statement.) Key
observation: finding twiddles is the same as fixing the first letter (one of up to five
possibilities) and appending some twiddle of the remaining letters. A 'c' at str’s position
0, for instance, encodes the fact that 'a', 'b', 'c', 'd', or 'e' might contribute to a
potential twiddle at position 0. And for each of those five possibilities at position 0, there
are five contributions at position 1, and for each of those 25 possible possibilities between
0 and 1 combined, there are five independent contributions that might be made at position
2, and so on, and so on.

 3

static void listTwiddles(const string& str, const Lexicon& lex) {
 listTwiddles("", str, 0, lex);
}

• The 0th argument is the empty string to clarify that no decisions made been made at the

outset.
• The 2nd argument is 0 to be clear that str[0] is the character that tells us how me

might extend the empty string into five different prefixes of length 1.

static void listTwiddles(const string& prefix, const string& str, int index,
 const Lexicon& lex) {

 if (!lex.containsPrefix(prefix)) return; // not strictly necessary
 if (index >= str.size()) {
 if (lex.contains(prefix)) cout << prefix << endl;
 return;
 }

 for (char ch = str[index] - 2; ch <= str[index] + 2; ch++) {
 if (isalpha(ch)) {
 listTwiddles(prefix + ch, str, index + 1, lex);
 }
 }
}

Lab Problem 1 Solution: Letter Rectangles and Words

My implementation wraps the three-argument version around a call to a four-argument
version. The overloaded version of gatherWords—that one that really does all of the
work—keeps track of the running prefix built up by an ordered selection of (possibly
rotated) rectangles leading up to the call. Initially, we haven’t selected any rectangles,
which is why my wrapper passes an empty string in as the 0th parameter.

static void gatherWords(const Vector<string>& rects,
 const Lexicon& english, Lexicon& words) {
 Vector<string> copy = rects;
 gatherWords("", copy, english, words);
}

static void gatherWords(const string& prefix, Vector<string>& rects,
 const Lexicon& english, Lexicon& words) {
 if (!english.containsPrefix(prefix)) // prefix is nonsense?
 return; // pretend we never made this call
 if (english.contains(prefix)) // prefix is a word?
 words.add(prefix); // incidentally print, but continue

 for (int i = 0; i < rects.size(); i++) {
 string rect = rects[i];
 rects.remove(i); // temporarily remove so it doesn’t get used twice
 gatherWords(prefix + rect[0] + rect[1], rects, english, words);
 gatherWords(prefix + rect[1] + rect[0], rects, english, words);
 rects.insert(i, rect); // insert back so it can be used deeper down
 }
}

