
CS106B Handout 16 

Autumn 2012 October 15th, 2012 

Assignment 3: Short Recursion Problems 
 
Assignment 3 is going out in two parts: this one, which has you implement a few short 
recursion problems and submit them for feedback, and a larger one, which has you 
implement the game of Boggle.  Both parts are required, but you’re to complete and submit 
solutions for the problems described in this handout first, and then move on to the larger 
assignment—one that has you implement the game of Boggle—afterwards, which is 
discussed in Handout 17. (There’s an Assignment 3 overview session on Wednesday, 
October 17th at 4:15 in our normal lecture hall.) 
 

Solutions to Warm-up Problems Due: Monday, October 22nd at 3:00 p.m. 
Solution to Boggle Due: Friday, October 26th at 3:00 p.m. 

 
For the three warm-up exercises, we specify the function prototype. Your function must 
exactly match that prototype (same name, same arguments, same return type, although 
you’re welcome to implement it to wrap around another function with a different 
prototype).  Your function must use recursion; even if you can come up with an iterative 
alternative, we insist on a recursive formulation!  Also, note that the Boggle assignment is 
much more involved than these warm-up problems, so don’t be left with the impression that 
you somehow need a week to complete the warm-ups and just four more days for Boggle.  
In practice, you’ll want to press through these problems fairly quickly and move on to 
Boggle pronto.  I’m giving you seven days for this part, not because it takes that long to 
complete them, but because it’s obnoxious to give you less than a week for anything. 
 
Think of these three problems and the Boggle portion of the assignment as one big 
assignment, and consider the completion of these three problems to be a milestone that 
needs to be completed by next Monday.  As opposed to Assignment 1’s checkpoint, these 
problems are required and solutions to them need to be submitted. 
 
Late day computation is the sum of the late days used between the two, so ideally you’d 
turn in the solutions to the warm-up exercises on time and take at most one late day for 
Boggle, so you have Monday to collect your thoughts and mentally prepare for the midterm 
on Tuesday evening. 
 

 



   2 

Problem 1: Recursive Trees 

The drawing on the right is a 
tree of order 5, where the trunk 
of the tree is drawn from the 
bottom center of the graphics 
window straight up through a 
distance of kTrunkLength 
pixels.  Sitting on top of that 
trunk are seven trees of order 4, 
each with a base trunk length 
that’s 70% of the original.  Each 
of the order-4 trees is topped off 
with seven order-3 trees, which 
are themselves comprised of 
order-2 trees, and so on. 
 
The seven trees extend from the 
top of the tree trunk at relative 
angles of ±45, ±30, ±15, and 0 degrees.  And even though you can’t see it in the printout, if 
you run the sample application, you’ll notice that the inner branches—or more specifically, 
all contributions at order 2 and higher—are drawn in kTrunkColor, and the leafy fringe of 
the tree is drawn in kLeafColor. 
 
I’ve set up a trees.cpp file that draws an order-0 tree, and then layers an order-1 on top 
of it, and then an order-2 tree on top of that, and so forth.  You’re to complete the 
implementation so that the full sweep of the tree gets drawn.  You should rely on the library 
method GWindow::drawPolarLine to draw lines at various angles, just as the draw-
coastline example in Handout 14 
does. 
 
Once you get this working, adapt 
your implementation so that it 
potentially draws something like the 
tree drawn on the right.  The same 
code used to generate the first 
drawing above was used to generate 
this one, except that in the first, each 
recursive call was made with 
probability 1.0, whereas in the 
second, each recursive call was 
made with probability 0.8.  



   3 

Problem 2: Generating Mnemonics [adapted from Chapter 8, Exercise 10] 

On a telephone keypad, the digits are mapped onto the alphabet as shown here: 
 

 
 
Service providers like to find numbers that spell out some word (called a mnemonic) 
appropriate to their business that makes that phone number easier to remember. 
 
Write a function generateMnemonics that generates all possible letter combinations for a 
given number, represented as a string of digits.  The call generateMnemonics("723"), 
for example, should generate: 
 

PAD PBD PCD QAD QBD QCD RAD RBD RCD SAD SBD SCD 
PAE PBE PCE QAE QBE QCE RAE RBE RCE SAE SBE SCE 
PAF PBF PCF QAF QBF QCF RAF RBF RCF SAF SBF SCF 

 
and plant them, in alphabetical order, into a Vector<string>. 
 
I’ve set up a mnemonics.cpp file that is complete, save for the implementation of the 
generateMnemonics function, which you should flesh out.  Your implementation should 
generate all possible letter combinations and plant them into the referenced 
Vector<string>. 
 



   4 

Problem 3: Finding Dominosa Solutions 

The game of Dominosa presents a grid of small nonnegative integers, perhaps as follows: 
 
 
 
 
 
 
There are always two rows of numbers, but the number of columns can, in principle, be any 
positive integer. 
 
The goal is to pair horizontally and vertically adjacent numbers so that every number takes 
part in some pair, and no two pairs include the same two numbers.  As such, one solution to 
the above problem would pair everything as follows: 
 
 
 
 
 
 
Sadly, not all boards can be solved.  One small, obvious example is: 
 
 
 
 
 

 
Run the dominosa-sample sample application we’ve included in the collection of starter 
files.  You’ll see that the program generates random 2 x n boards (where you choose the 
value of n to be between 9 and 25 inclusive).  For each randomly generated board, the 
application will animate the recursive backtracking search that determines whether some 
such pairing exists.  The starter code provides the core of the interactive program, and it also 
provides a fully operational DominosaDisplay class that can be used to manage all 
aspects of the visualization.  Your job is to implement the canSolveBoard function, 
which has the following prototype: 
 

bool canSolveBoard(DominosaDisplay& display, Grid<int>& board); 
 

You’ll need to read over the dominosa-graphics.h file to see how the 
DominosaDisplay can be used to script the animation, which if properly implemented 
will do a superb job of visually confirming that your recursive backtracking algorithm is 
working properly. 
 

6 

1 

2 

3 

5 

0 

3 

2 

3 

3 

6 

0 

4 

1 

4 

3 

2 

1 

3 

5 

3 

4 

6 

2 

2 

2 

6 

1 

2 

3 

5 

0 

3 

2 

3 

3 

6 

0 

4 

1 

4 

3 

2 

1 

3 

5 

3 

4 

6 

2 

2 

2 

3 

1 

1 

3 


