
CS106B Handout 17

Autumn 2012 October 15th, 2012

Assignment 3: Boggle
Thanks to Todd Feldman for the original idea behind the assignment.

Kudos to Julie Zelenski and Eric Roberts for the handout.

The Game of Boggle

Those of you fortunate enough to have spent summers seeing the world from the back of
the family station wagon with the 'rents and sibs may be familiar with Boggle, the little
word game that travels so well, and those who didn't will soon become acquainted with
this vocabulary-building favorite. The Boggle board is a 4x4 grid onto which you shake
and randomly distribute 16 dice. These 6-sided dice have letters rather than numbers,
creating a grid of letters from which you can form words. In the original version, the
players start simultaneously and write down all the words they can find by tracing by a
path through adjoining letters. Two letters adjoin if they are next to each other horizontally,
vertically, or diagonally. There are up to eight letters adjoining a cube. A letter can only be
used once in the word. When time is called, duplicates are removed from the players' lists
and the players receive points for their remaining words based on the word lengths.

Solutions to Warm-ups Due: Monday, October 22nd at 3:00 p.m.
Solution to Boggle Due: Friday, October 26th at 3:00 p.m.

This part of Assignment 3 is to write a program that plays a fun, graphical rendition of this
little charmer, adapted to allow the human and machine to play one another. As you can
see from the screen shot above, the computer basically trounces all over you, but it's fun to
play anyway.

The main focus of this part of the assignment is designing and implementing the recursive
algorithms required to find and verify words that appear in the Boggle board. This problem
is larger than any of the problems appearing in Handout 16, so don’t be lulled into thinking
it can be done in one sitting.

 2

How's this going to work?

You set up the letter cubes, shake them up, and lay them out on the board. The human
player gets to go first (nothing like trying to give yourself the advantage). The player enters
words one by one. After verifying that a word is legitimate, you highlight its letters on the
board, add it to the player’s word list, and award the player some points (of course, longer
words count more).

Once the player has found as many words as he or she can, the computer takes a turn.
The computer searches through the board to find all the remaining words and awards itself
points for those words. The computer typically beats the player mercilessly, but the player
is free to try again and again, until finally ready to acknowledge the superiority of silicon.

The letter cubes

The letters in Boggle are not simply chosen at random. Instead, the letter cubes are
designed in such a way that common letters come up more often and it is easier to get a
good mix of vowels and consonants. To recreate this, our starter code declares an array of
the cubes from the original Boggle. Each cube is described using a string of 6 letters, as
shown below:

const string kStandardCubes[16] = {
 "AAEEGN", "ABBJOO", "ACHOPS", "AFFKPS",
 "AOOTTW", "CIMOTU", "DEILRX", "DELRVY",
 "DISTTY", "EEGHNW", "EEINSU", "EHRTVW",
 "EIOSST", "ELRTTY", "HIMNQU", "HLNNRZ"
};

These strings are used to initialize the cubes on the board. At the beginning of each game,
"shake" the board cubes. There are two different random aspects to consider. First, the
cubes themselves need to be shuffled so that the same cube is not always in the same
location on the board. Second, a random side from each cube needs to be chosen to be
the letter facing up.

To rearrange the cubes on the board, you should use the following shuffling algorithm,
presented here in pseudo-code form:

Copy the constant array into a vector vec so you can modify it.
Shuffle vec using the following approach:
 for (int i = 0; i < vec.size(); i++) {
 Choose a random index r between i and the last element position, inclusive.
 Swap the element at positions i and r .
 }
Fill the Boggle grid by choosing the elements of vec in order.

This code makes sure that the cubes are arranged randomly in the grid. Choosing a
random side to put face-up is straightforward. Put these two together and you can shake
the cubes into many different board combinations.

 3

Alternatively, the user can choose to enter a custom board configuration. In this case, you
still use your same board data structure. The only difference is where the letters come
from. The user enters a string of characters, representing the cubes from left to right, top to
bottom. Verify that this string is long enough to fill the board and re-prompt if it is too
short. If it’s too long, just ignore the ones you don’t need. You do not need to verify that
the entered characters are legal letters.

The human player's turn

The human player enters each word she finds on the board. For each word, check that:

• It is at least four letters long.
• It is contained in the English lexicon.
• It has not already been included in the player’s word list (even if there is an

alternate path on the board to form the same word, the word is counted at most
once).

• It can be formed on the board (i.e., it is composed of adjoining letters and each
cube is used at most once).

If any of these conditions fail, the word is rejected. If all is good, you add the word to the
player’s word list and score. In addition, you graphically show the word’s path by
temporarily highlighting the relevant cubes. You can use the graphics function pause to
implement the delay. The length of the word determines the score: one point for a 4-letter
word, two points for 5 letters, and so on. The functions from the gboggle.h interface
provide helpful routines for highlighting cubes, displaying word lists, and handling scores.

The player enters a blank line when done finding words, which signals the end of the
human’s turn.

The computer's turn

The computer then searches the entire board to find the remaining words missed by the
human player. The computer earns points for each word found that meets the
requirements (minimum length, contained in English lexicon, not already found, and can
be formed on board).

As with any exponential search algorithm, it is important to look for ways to limit the
search to ensure that the process can be completed in a reasonable amount of time. One
of the most important Boggle strategies is to prune dead end searches. For example, if you
have a path starting zx, the Lexicon’s containsPrefix method should inform you
there are no English words down that path. So, you should stop right here and move on to
more promising combinations. If you miss this optimization, you’ll find yourself taking
long coffee breaks while the computer is futilely looking for words like zxgub, zxaep, etc.

 4

Our provided code

We have written all the fancy graphics functions for you. The functions exported by the
gboggle.h interface are used to manage the appearance of the game window. It
includes functions for initializing the display, labeling the cubes with letters, highlighting
cubes, and displaying the word lists. Read the interface file for more details. The
implementation is provided to you in source form so you can extend this code in your own
novel ways if you are so inclined.

The Grid and Lexicon classes you’ve already seen will come in handy again. Our
English "EnglishWords.dat" file contains over 125,000 words, which is about four
times as large as the average person’s vocabulary, so it’s no wonder that the computer
player is so good.

Solution strategies

In a project of this complexity, it is important that you get an early start and work
consistently toward your goal. To be sure that you’re making progress, it also helps to
divide up the work into manageable pieces, each of which has identifiable milestones.
Here’s a suggested plan of attack that breaks the problem down into five phases:

• Task 1—Cube setup, board drawing, cube shaking. Design your data structure for
the cubes and board. It will help to group related data into sensible structures rather
than pass a dozen parameters around. As usual, do not use global variables. Set up
and shuffle the cubes. Use the gboggle routines to draw the board. Add an
option for the user to force the board configuration, as illustrated by the sample
application. (Note that gboggle isn’t object-oriented like previous graphics
libraries. That’s simply because the interface was defined before we introduced the
GWindow class, and we didn’t want to change the interface just because the
implementation changed. It’s been working too well as is.)

• Task 2—Human’s turn (except for finding words on the board). Write the loop that
allows the user to enter words. Reject words that have already been entered or that
don’t meet the minimum word length or that aren’t in the English language. Use the
gboggle functions to add words to the graphical display and keep score.

• Task 3—Find a given word on the board. Now put your recursive talents to work in
verifying that a word can be formed on the board, subject to the adjacency and
non-duplication rules. You will employ recursive backtracking that "fails fast": as
soon as you realize you can’t form the word starting at a position, you move on to
the next position. If a path is found, use the highlighting function from gboggle to
temporarily draw attention to cubes proving the word is present.

• Task 4—Find all the words on the board (computer’s turn). Now it’s time to
implement the killer computer player. Employing the power of recursion, your
computer player traverses the board using an exhaustive search to find all remaining
words. Be sure to use the Lexicon’s prefix search to abandon searches down
dead-end paths.

 5

• Task 5—Polish. With everything now working, it’s time to finish off the details. Be
sure to gracefully handle all user input. Make sure your comments are thoughtful
and complete. Pat yourself on the back and go eat some ice cream!

Requirements and suggestions

Here are a few details about our expectations for your solutions:

• Words should be considered case insensitively: PEACE is the same as peace.
• The program contains two recursive searches: one to find a specific word entered by

the human player and another to search the board exhaustively for the computer’s
turn. They are somewhat similar, and you may be tempted to try to integrate the
two into one combined function. In general, we applaud this instinct to unify
similar code. However, we need to tell you that it doesn’t play out well in this one
case. There are enough differences between the two that they don’t combine
cleanly and the unified code is actually made worse, not better, as a result. Given
the tricky nature of recursion, you should focus on writing exceptionally clean code
that clearly communicates its algorithm and thus can be easily maintained and
debugged. An important goal for this assignment is that you to learn how to employ
these two different varieties of recursion into the context of a larger program, and
we expect you to do so by writing two separate recursive searches.

• Our solution is about 250 lines of code (not counting comments) and is
decomposed into about 30 functions.

• This is the first large program you’re required to write in the course (we’ll say that
the Life assignment is relatively medium in size). Getting to a working solution is
an excellent indication that you’re on top of the technical challenges. This program
is also an opportunity to demonstrate your commitment to good style. Your
program should show thoughtful choices, be cleanly decomposed, be easily
readable, and contain appropriate comments. If you view style only as an
afterthought—a rearrangement after the fact to clean things up—you’ll have missed
a huge part of the benefit, which is that paying careful attention to design from the
beginning results in code that is faster to write, is more likely be functionally correct,
is easier to debug and modify, and requires far fewer comments.

