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Recursive Backtracking I 
 

Recursive Backtracking 

So far, all of the recursive algorithms we have seen have shared one very important 
property:  each time a problem was recursively decomposed into a simpler instance of the 
same problem, only one such decomposition was possible; consequently, the algorithm 
was guaranteed to produce a solution to the original problem.  Today we will begin to 
examine problems with several possible decompositions from one instance of the problem 
to another.  That is, each time we make a recursive call, we will have to make a choice as 
to which decomposition to use.  If we choose the wrong one, we will eventually run into a 
dead end and find ourselves in a state where we are unable to solve the problem and 
unable to recur any further; when this happens, we will have to backtrack to a "choice 
point" and try another alternative.   
 
If we ever solve the problem, great—we’re done.  Otherwise, we need to keep exploring all 
possible paths by making choices and, when they prove to have been wrong, backtracking 
to the most recent choice point.  What’s really interesting about backtracking is that we 
only back up in the recursion as far as we need to go to reach a previously unexplored 
opportunity.  Eventually, more and more of these options will have been explored, and we 
will backtrack further and further.  If we happen to backtrack to our initial position and find 
we’ve nothing else to explore, the particular problem at hand is unsolvable. 

 
 
 
 

 

 

 

 

Shrinking A Word [courtesy of Julie Zelenski] 

Consider the simply stated question: Is it possible to take an English word and remove its 
letters in some order such that every string along the way is also English? 
 

Continue reading Chapters 7 and 8, and read Sections 1 
and 2 of Chapter 9 (and skim the rest of the chapter if 
you’d like).  We’ve finished the examples in Handout 14, 
so we’ll start covering the examples in this handout today. 
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Sometimes it’s possible. For example, we can shrink the word "smart" down to the 
empty string while obeying the restriction that all of the intervening strings are also 
legitimate words.  Check this out: 
 

"smart" 
"mart" 
"art" 
"at" 
"a" 
"" 

 
We elect to first remove the s, then the m, then the r, then the t, and finally the a.  Note 
that every single string in the above diagram is an English word: That means that, for the 
purposes of the this problem, it’s possible to shrink the word "smart" down to nothingness. 
 
Not surprisingly, there are some perfectly good English words that can’t be shrunk at all: 
"zephyr", "lymph", "rope", "father".  A reasonable question to ask at this point: 
Can we programmatically figure out which words can be shrunk and which ones can’t be? 
 
The answer, not surprisingly, is yes, and our answer involves a form of recursion we’ve not 
formally seen before. 
 
All prior recursive examples have been fully exhaustive in that every single recursive call 
that could be made was indeed made and contributed to the overall answer.  In this 
example, we only commit to some of the recursive calls if a previous one failed to provide 
an answer.  Check out the code for our canShrink function, which returns true if and 
only if it’s possible to shrink the provided word down to the empty string: 
 

static bool canShrink(const string& str, const Lexicon& english) { 
 if (str.empty()) return true; 
 if (!english.contains(str)) return false; 
  
 for (int i = 0; i < str.size(); i++) { 
  string subsequence = str.substr(0, i) + str.substr(i + 1); 
  if (canShrink(subsequence, english)) { 
   return true; 
  } 
 } 
  
 return false; 
} 

 
The code includes two base bases—that part isn’t new.  But look at the for loop and how 
it surrounds the recursive call.  Each iteration considers the incoming string with some 
character removed, and then looks to see if that new string is also a word and can be 
shrunk down to nothingness.  Look at this for loop as a series of opportunities to return 
true. If it just so happens to find some path to the empty string sooner than later, it returns 
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true without making any other canShrink calls.  Only if every single path turns up 
nothing do we truly give up and return false. 
 
It’s pretty clear why true and false get returned, since the initial call wants a yes or no 
as to whether or not the provided word can be made to disappear.  But what may not be 
immediately clear is that the recursive calls also rely on those return values to figure out 
whether or not the path it chose to recursively explore was a good one. 
 
The above version correctly returns true or false, but it doesn’t remember what words 
lead down to the empty string.  This second version uses a Stack<string> to take a 
snapshot of all of the strings that led down the empty string, and it builds this 
Stack<string> as the cascade of return true statements prompt the recursion to 
unwind.  Here’s the new and improved version: 
 

static bool canShrink(const string& str, const Lexicon& english, 
Stack<string>& path) { 
 if (str.empty()) { 
  path.push(""); 
  return true; 
 } 
     
 if (!english.contains(str)) return false; 
  
 for (int i = 0; i < str.size(); i++) { 
  string subsequence = str.substr(0, i) + str.substr(i + 1); 
  if (canShrink(subsequence, english, path)) { 
   path.push(str); 
   return true; 
  } 
 } 
  
 return false; 
} 

 
If the initial call to canShrink returns true, then we know that the Stack<string> 
contains the bottom-up accumulation of all of the strings that led to the empty string.   
 
Here’s a short program that helps exercise the second version of canShrink: 
 

static void printShrinkPath(const string& str, Stack<string>& path) { 
    cout << endl; 
    while (!path.isEmpty()) { 
        cout << "\t\"" << path.pop() << "\"" << endl; 
    } 
    cout << endl; 
} 
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int main() { 
 Lexicon english("EnglishWords.dat"); 
 while (true) { 
  string word = getLine("Enter a word: "); 
  if (word.empty()) break; 
  Stack<string> path; 
  if (canShrink(word, english, path)) { 
            cout << "Yes! Here's the path: " << endl; 
            printShrinkPath(word, path); 
  } else { 
   cout << "That word can't be shrunk down." << endl; 
  } 
 } 
  
 return 0; 
} 

 
Just in case you’re on the edge of your seat, the longest shrinkable English word is 
complecting: 
 

"complecting" 
"completing" 
"competing" 
"compting" 
"comping" 
"coping" 
"oping" 
"ping" 
"pig" 
"pi" 
"i" 
"" 

 

Periodic Table as Alphabet: Take II 

In a previous example, we presented code to list all of those English words that can be 
spelled out using the symbols of the periodic table and nothing else.  Here’s a related 
problem that asks specifically whether or not the provided word can be spelled out using 
just the periodic table symbols.  We’ll assume that all of the symbols are 1, 2, or 3 letters 
long, that the symbols come via a Set<string>, and that all of the Lexicon methods 
we’re familiar with are case-insensitive. 
 
The idea is to see if the first 1, 2, or 3 letters match some symbol, and if so, to recur on all 
of the remaining length – 1, length – 2, or length – 3 letters to see if they can also be 
subdivided into periodic table elements.  Here’s the solution I came up with: 
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static string elementize(string str) { 
 if (!str.empty()) { 
   str = toLowerCase(str);    // -> "he" 
   str[0] = toupper(str[0]);  // -> "He" 
  } 
 
  return str; 
} 
 
static bool canSpell(string word, Set<string>& symbols) { 
 if (word.empty()) return true; 
  
  int length = word.size(); 
 for (int i = 1; i <= min(3, length); i++) { 
  if (symbols.contains(elementize(word.substr(0, i))) && 
        canSpell(word.substr(i), symbols)) { 
   return true; 
  } 

 } 
     
 return false; 
} 

 
If we want visual proof the word can be spelled, then we can accumulate the relevant 
symbols in a Stack as the successful search unwinds, and then print the serialization of 
the Stack from the call site. 
 

static bool canSpell(string word, Set<string>& symbols, Stack<string>& footprint) { 
  if (word.empty()) return true; 
  
   int length = word.size(); 
 for (int i = 1; i <= min(3, length); i++) { 
    string symbol = elementize(word.substr(0, i)); 
  if (symbols.contains(symbol) && 
       canSpell(word.substr(i), symbols, footprint)) { 
       footprint.push(symbol); 
   return true; 
  } 

 } 
     
 return false; 
} 
 

Here’s a main function that exercises the second version of canSpell, and illustrates how 
the footprint can be drained and printed to standard out, knowing that the last symbol 
used to spell the word is buried at the bottom, and the first symbol used is at the top: 
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int main() { 
  Set<string> symbols; 
   addPeriodicTableElements(symbols); // assume this just works as implied 
 while (true) { 
  string word = getLine("Enter a word: "); 
  if (word.empty()) break; 
      Stack<string> footprint; 
  if (canSpell(word, symbols, footprint)) { 
       cout << "That can be spelled as \""; 
         while (!footprint.isEmpty()) { 
          cout << footprint.pop(); 
        } 
        cout << "\"." << endl; 
      } else { 
     cout << "That's just not possible." << endl; 
     } 
 } 
  
  return 0; 
} 

 
Finally, here’s a test run of the above program to illustrate the output is as excepted (or at 
least believable).  Note that  
 

Enter a word: hen 
That can be spelled as "HeN". 
Enter a word: foolishness 
That can be spelled as "FOOLiSHNEsS". 
Enter a word: partial 
That can be spelled as "PArTiAl". 
Enter a word: hooligan 
That can be spelled as "HOOLiGaN". 
Enter a word: hooliganism 
That can be spelled as "HOOLiGaNISm". 
Enter a word: indefatigable 
That's just not possible. 
Enter a word: antidisestablishmentarianism 
That's just not possible. 
Enter a word: 

 
Cubic Decomposition 

All perfect cubes—save for a relatively small number of them—can be expressed as a sum 
of three or more distinct, smaller cubes.  Just trust me on it as you check out these 
examples: 
 

  

€ 

63 = 53 + 43 + 33

133 = 123 + 73 + 53 +13

693 = 593 + 253 +173 +103 + 43

10213 = 10143 + 2313 +1773 +1573

 

 
Most of them can be expressed as a sum of three, four, or five perfect cubes, but some 
require more. 
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We can write a predicate function called cubicDecompositionExists, which takes in 
an int we’ll call n and a reference to an initially empty Set<int> called cubicRoots, 
and design it to return true if and only if n3 can be decomposed into a sum of smaller, 
distinct cubes.  When we return true, we can make sure the Set<int> referenced by 
cubicRoots is populated with a collection of distinct integers that, when cubed and 
added together, produce n3. 
 
• cubicDecompositionExists(5, cubicRoots) should return false, because 

53 is greater than 43 + 33 + 23 + 13 
• cubicDecompositionExists(6, cubicRoots) should return true, and after it 

returns, cubicRoots should contain 3, 4, and 5. (As it turns out, this is the only such 
decomposition.) 

• cubicDecompositionExists(11, cubicRoots) should return false, because 
there’s no cubic decomposition that produces 53. 

• cubicDecompositionExists(1021, cubicRoots) should return true, and 
after it returns, cubicRoots might contain 1014, 231, 177, and 157.  (I say might, 
because there are several cubic decompositions of 10213, and we’ll allow our routine 
to discover any single one of them.) 
 

And because we all want the most out of the code we write, we’ll further require that our 
implementation identify the decomposition (or at least one of the many decompositions) 
with the smallest cubicRoots set. 
 

static bool cubicDecompositionExists(int remaining, int n, 
                                     Set<int>& cubicRoots, int numTermsAllowed) { 
 if (remaining == 0) return true; 
  if (remaining < 0) return false; // not necessary.. huge perf win, though 
  if (numTermsAllowed == 0) return false; 
     
  for (int s = n - 1; s > 0; s--) { 
  if (cubicDecompositionExists(remaining - s * s * s, s, 
                               cubicRoots, numTermsAllowed - 1)) { 
    cubicRoots += s; 
     return true; 
        } 
 } 
     
 return false; 
} 
 
static bool cubicDecompositionExists(int n, Set<int>& cubicRoots) { 
 for (int maxTerms = 2; maxTerms <= n; maxTerms++) { 
  if (cubicDecompositionExists(n * n * n, 
                               n, cubicRoots, maxTerms)) 
   return true; 
  } 
     
 return false; 
} 
 


