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Recursive Backtracking II 
 

Solving the Eight Queens Problem 

The Eight Queens Problem is a classic programming puzzle that asks whether it’s possible 
to place eight queens on an 8 x 8 chessboard in such a way that they can all coexist 
without attacking each other.  Placing nine queens on an 8 x 8 is impossible—there’s a 
pigeonhole principle argument against it, for at least two queens would always need to 
occupy the same column.  But it’s not immediately obvious whether eight queens can be 
placed on an 8 x 8 board, nor is it obvious whether N queens can be placed on an N x N 
board in general. 

 
One approach—by far the most common programmatic one I know of—uses recursive 
backtracking to discover a solution, and that approach is spelled out on the next page: 
 



  2  

static bool solve(GWindow& window, Grid<bool>& board, int col) { 
  if (col == board.numCols()) return true; 
 
   for (int rowToTry = 0; rowToTry < board.numRows(); rowToTry++) { 
     placeQueen(window, rowToTry, col, kPossiblilityColor); 
      if (isSafe(board, rowToTry, col)) { 
       board[rowToTry][col] = true; 
        placeQueen(window, rowToTry, col, kProvisionalColor); 
       if (solve(window, board, col + 1)) { 
        placeQueen(window, rowToTry, col, kPermanantColor); 
          return true; 
        } 
         board[rowToTry][col] = false; 
      } 
     placeQueen(window, rowToTry, col, kNoPossibilityColor); 
   } 
     
  return false; 
} 
 
static void solve(GWindow& window, Grid<bool>& board) { 
 solve(window, board, 0); 
} 
 

The second of the two versions is called on an empty board, and the first one implements 
the recursive backtracking.  Each call to solve assumes that queens have been placed in 
columns 0 through col – 1 in a configuration that allows them to all coexist peacefully. 
The solve call systemically searches its own column for a row where yet another queen 
can be placed without introducing a conflict, and then recurs on col + 1.  If the recursive 
call on col + 1 returns true, then that true is immediately propagated up to whoever 
called us.  If it returns false, we backtrack by lifting the queen we placed and advancing 
on to higher rows.  Only when solve has tried to extend the partial solution it inherited in 
every way possible—and failed every time—does it return false. 
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Solving SuDoKu Puzzles [idea by Julie Zelenski] 

Recursive backtracking can also be used to solve SuDoKu puzzles by systematically 
considering every single way to legitimately place a number in some open square that, at 
least for the moment, works, and then recurring on the same board to see if that decision 
was a good one. 
 

 
static bool solve(GWindow& window, Grid<int>& board) { 
  int row, col; 
   if (!findEmptyLocation(board, row, col)) return true; 
     
   for (int digit = 1; digit <= 9; digit++) { 
    if (isFreeOfConflict(board, row, col, digit)) { 
     updateBoardLocation(window, board, row, col, digit); 
    if (solve(window, board)) return true; 
   updateBoardLocation(window, board, row, col, kEmpty); 
   } 
  } 
     
  return false; 
} 
 

For those new to SuDoKu, the challenge is to fill in all empty squares with numbers 1 
through 9 so that each digit appears exactly once per row, once per column, and once per 
3 x 3 block.  The above solution relies on three helper functions, and those helper 
functions insulate us from some algorithmic detail.  There is no denying the above is classic 
recursive backtracking—even if it’s very brute force and not very intelligent. 
 
isFreeOfConflict decides, given the current state of the board, whether digit can be 
placed at the identified position without violating the rules.  updateBoardLocation 
updates the board to house the supplied number at the specified coordinate (and updates the 
visuals as well).  The only function students find confusing is findEmptyLocation.  From 
context, it appears to return a true if and only if there’s some unassigned slot, but what isn’t 
clear is that, when true is returned, row and col are updated (by reference) to some empty 
location’s coordinates.  It becomes clearer if you see the code for it, so here it is: 
 

Original Mid Progress Solved 
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static bool findEmptyLocation(Grid<int>& board, int& row, int& col) { 
  for (row = 0; row < kBoardDimension; row++) { 
    for (col = 0; col < kBoardDimension; col++) { 
       if (board[row][col] == kEmpty) return true; 
     } 
  } 
     
   return false; 
} 

 
This particular implementation just searches top-to-bottom, left-to-right until it finds 
something that’s empty.  It’s fairly naïve and results in a solution that takes its time for all but 
the most trivial of boards.  However, it’s possible to search not just for some empty square, 
but for the empty square that is more constrained than any other.  We can use the 
isFreeOfConflict routine to brute-force double-for loop over all locations, keeping 
running track of the location that has fewer possible assignments—at least at the moment—
than any previously analyzed location.  There’s no sense, for instance, fussing over all of the 
empty cells in the upper left corner of the board if there’s some cell in the lower right that 
can only be assigned one number. 
 

static int countNumOptions(Grid<int>& board, int row, int col) { 
    int numOptions = 0; 
    for (int digit = 1; digit <= kNumDigits; digit++) { 
        if (isFreeOfConflict(board, row, col, digit)) 
            numOptions++; 
    } 
     
    return numOptions; 
} 
 
static bool findBestEmptyLocation(Grid<int>& board, int& row, int& col) { 
    int smallestNumOptions = kNumDigits + 1; 
    for (int r = 0; r < kBoardDimension; r++) { 
        for (int c = 0; c < kBoardDimension; c++) { 
            if (board[r][c] == kEmpty) { 
                int numOptions = countNumOptions(board, r, c); 
                if (numOptions < smallestNumOptions) { 
                    row = r; 
                    col = c; 
                    smallestNumOptions = numOptions; 
                } 
            } 
        } 
    } 
     
    return smallestNumOptions <= kNumDigits; 
} 

 
 


