
CS106B Handout 12

Autumn 2012 October 24th, 2012

Section Handout

Discussion Problem 1: NEWS Puzzles

NEWS puzzles are maze-like constructions where the goal is to navigate from one location
to another. You’re free to wander up, down, left, and right as you please, except that
moves are constrained by a set of rules. Here they are:

• If a particular coordinate is labeled with N, E, W, or S, then the next coordinate
must reside due north, east, west, or south, respectively.

• If a particular coordinate is labeled with a +, then the next coordinate might reside
in any of the four major compass directions.

• If a particular coordinate isn’t labeled, then that coordinate is considered a bridge,
and you must pass straight through that coordinate—that is, if you move east into an
unlabeled coordinate, you must move east again.

 2

The puzzle itself is modeled as a Grid<rule>, where a rule is defined here:

enum rule {
 North, East, West, South,
 Bridge, // rule identifying a coordinate as a bridge.
 Any, // rule allowing movement in any of the four compass directions
 OffLimits // "rule" asserting that the coordinate isn't part of the puzzle
};

Combine the above with a reasonable definition of a coord

struct coord {
 int row;
 int col;
};

and a sure-to-be-useful helper function

static coord nextCoord(const coord& c, rule r) {
 coord next = c;
 switch (r) {
 case North: next.row--; break;
 case East: next.col++; break;
 case West: next.col--; break;
 case South: next.row++; break;
 }

 return next;
}

and you’re equipped to implement a recursive backtracking routine which decides whether
a path from one coordinate to another exists while respecting all rules. For simplicity, you
should assume that:

• the coord type magically works with all relational operators, including < and ==.
• the initial location houses either an N, E, W, S, or +, so there’s no confusion how to

initiate a search.

Implement the pathExists function, which returns true if and only if one can travel
from start to finish while respecting the rules. You needn’t return the path itself—just
the true or the false.

static bool pathExists(const Grid<rule>& maze,
 const coord& start, const coord& finish);

 3

Discussion Problem 2: Stable Counting Sort

Consider the following data structure:

struct entry {
 int key;
 string name;
};

where it’s understood the key field stores an integer between 0 and 100, inclusive.

Write the stableCountingSort function, which accepts a reference to a
Vector<entry> and sorts it, not by calling insertion sort or merge sort or any of the
sorting routines we’ve studied in lecture, but by implementing a stable counting sort.
Counting sort—at least the way you’re to implement it for this problem—would build a
Vector of 101 Queue<entry>s—one for each of the possible keys—and distribute all of
the incoming entries to the proper queues. Then all of the queues can be depleted—from
index 0 through index 100—to lay down a sorted sequence into the original
Vector<entry>. If two entries have the same key, then their relative order in the
original sequence must be preserved. (This algorithm runs in O(n) time, where n is the size
of the sequence. Why do you think it’s faster than even merge sort?)

static void stableCountingSort(Vector<entry>& v);

Discussion Problem 3: Order Statistics

Implement a routine called rfind, which searches an unsorted Vector<int> and
returns the element of the specified rank. Requesting the element of rank 0 is a request to
return the smallest element, and requesting an element of rank n - 1, where n is the length
of the sequence, is a request to return the largest.

The classic implementation of rfind leverages the implementation of quicksort’s
partition, which we looked at in lecture. It should first create a clone of the vector (so
that the original one can be left unmodified), and then partition the clone around a
pivot as quicksort would. By examining the partition’s return value, we can decide
which part of the partitioned sequence—the part preceding the return index, or the part
coming after it—should be iteratively examined in order to discover what element ranks as
the rankth element overall.

static int rfind(const Vector<int>& v, int rank);

For an arbitrary permutation of a collection of distinct numbers, the algorithm you’ll be
writing runs in O(n) time in the best case, and O(n2) in the worst case.

 4

Lab Problem 1: Interpolation Search

Interpolation search, like binary search, can be used to efficiently search a sorted vector of
numbers. Binary search always compares the median element—that is, the element at the
50th percentile point—to decide which half to discard and which half to continue
searching. Interpolation search doesn’t just choose the median for comparison, but instead
chooses a value based on how close the search term is to the smallest and largest numbers.
For instance, if you’re searching for the number 200 in a sorted vector, and the vector
contains numbers from 0 up through 1000, you might choose to compare your 200 not to
the median element, but the one at the 20th percentile point. As needed, and using the
same technique, you recur or iterate on an increasingly smaller range until you find, or fail
to find, a match.

Interpolation search mimics how we’d search a physical phone book for, say, the last name
Crandall—we wouldn’t really open it up to the middle and launch a binary search. We’d
open it up near the front—maybe 15% of the way in—and spawn something of an
interpolation search instead.

Implement the search function, which takes a Vector<double>—sorted from low to
high—and a key, and returns the index of the key within the vector, or -1 if it’s not present.
You must implement search using the interpolation technique described above.

static int search(Vector<double>& values, double key);

In the best case, the algorithm runs in O(log log n) time, and in the worst case, runs in O(n)
time. What types of vectors and search values bring out the best and worst case behavior?

