
CS106B Handout 22S

Autumn 2012 October 24th - 26th, 2012

Section Solution

Discussion Problem 1 Solution: NEWS Mazes

Because the maze isn’t necessarily rectangular, we refine what it means to be "in bounds"
by checking to see if a supplied coord is part of the Grid and houses an actionable rule.
(Note that because maze is a reference to an immutable Grid, we need to use get instead
of the more convenient operator[][] notation.)

static bool inBounds(const Grid<rule>& maze, const coord& curr) {
 return
 maze.inBounds(curr.row, curr.col) &&
 maze.get(curr.row, curr.col) != OffLimits;
}

A five-argument version of pathExists—at least as I implement it—takes the rule that
navigated us into the current coordinate (as it might dictate how we move away from this
coordinate if the current coordinate houses a Bridge), and it also references a Set of
previously visited coordinates, so we don’t get caught up in some infinite loopy recursion.
It’s this five-argument version actually does the depth-first search via recursion
backtracking, and the three-argument version—the one you’ve been instructed to
implement—wraps a call to it.

static bool pathExists(const Grid<rule>& maze,
 const coord& curr, const coord& finish,
 rule prevRule, Set<coord>& visited) {

 if (!inBounds(maze, curr)) return false;
 if (visited.contains(curr)) return false;
 if (curr == finish) return true;

 rule currRule = maze.get(curr.row, curr.col);
 Vector<rule> possibilities;
 switch (currRule) {
 case North: case East: case West: /* fall through */
 case South: possibilities += currRule; break;
 case Bridge: possibilities += prevRule; break;
 case Any: possibilities += North, East, West, South; break;
 default: /* do nothing */ break;
 }

 if (currRule != Bridge) visited.add(curr);
 foreach (rule r in possibilities) {
 coord neighbor = nextCoord(curr, r);
 if (pathExists(maze, neighbor, finish, r, visited)) {
 return true;

 }
 }

 visited.remove(curr);
 return false;
}

 2

Note that we never add Bridges to the visited Set, because it’s possible we pass through
a Bridge multiple times on our way to the finish coordinate. One might think that’s a
problem, but because it’s the only one we allow to be visited multiple times, we’re
protected from loops, because some non-Bridge would need to precede some Bridge in
the loop, and that non-Bridge would eventually be in the visited Set.

Of course, there’s the wrapper call, which constructs an empty Set and supplies it to the
five-argument version. We also contrive a prevRule of Any, knowing that it’ll be
ignored, since we’re promised that start houses a non-Bridge, non-OffLimits rule.

static bool pathExists(const Grid<rule>& maze,
 const coord& start, const coord& finish) {
 Set<coord> visited;
 return pathExists(maze, start, finish, Any, visited);
}

Discussion Problem 2 Solution: Stable Counting Sort
struct entry {
 int key;
 string name;
};

static void stableCountingSort(Vector<entry>& v) {
 Queue<entry> buckets[101];
 for (int i = 0; i < v.size(); i++) {
 buckets[v[i].key].enqueue(v[i]);
 }

 v.clear();
 for (int k = 0; k < 101; k++) {
 while (!buckets[k].isEmpty()) {
 v.add(buckets[k].dequeue());
 }
 }
}

Why is the running time only O(n)? Because each element is enqueued and eventually
dequeued exactly once, and enqueue and dequeue run in constant—or O(1)—time.
All comparison sorts run in time O(n log n) time or more, but the counting sort approach—
which has advance knowledge that the elements being sorted fall into one of 101 different
categories —can be implemented to run even more quickly. In general, we should rely on
quicksort for the vast majority of our sorting needs. But occasionally you can make use of
a counting sort-like algorithm if you know the range of possible values is small and detect it
really makes a difference in running time.

Truth be told, you should almost always use quicksort. C’s qsort and C++’s sort
functions implement quicksort, and 99.9% of C and C++ programmers just use it instead of
hand-coding anything custom.

 3

Discussion Problem 3 Solution: Order Statistics

The version of partition used below is precisely the same as that shown in lecture, save for
the addition of the first line, which guards against the situation where it’s asked to partition
a sub-vector of size 1 (quicksort only calls partition on sub-vectors of size 2 or more, so the
guard wasn’t needed there).

static int partition(Vector<int>& v, int low, int high) {
 if (low == high) return low; // guard against arrays of size 0 or 1
 int pivot = v[low], left = low + 1, right = high;
 while (true) {
 while (left < right && v[right] >= pivot) right--;
 while (left < right && v[left] < pivot) left++;
 if (left == right) break;
 swap(v[left], v[right]);
 }

 if (v[left] >= pivot) return low;
 swap(v[low], v[left]);
 return left;
}

That partition returns the overall rank of its pivot within the original vector is
particularly good for rfind. The pivot’s rank, combined with the fact that partition
moves all things small (compared to the pivot, anyway) to the left and all things large to the
right, allows us to iteratively reframe the rfind call in terms of an ever-decreasing range
of indices.

static int rfind(const Vector<int>& v, int rank) {
 if (rank < 0 || rank >= v.size())
 error("Bogus rank of " + integerToString(rank) + " passed to rfind.");

 Vector<int> copy = v; // don’t change client's vector
 int low = 0;
 int high = v.size() - 1;
 while (true) {
 int mid = partition(copy, low, high);
 if (rank == mid) return copy[mid];
 if (rank < mid) high = mid - 1;
 else low = mid + 1;
 }
}

 4

Lab Problem 1 Solution: Interpolation Search

The following forms the core of my own solution, but there are many legitimate variations
on my approach.

static int interpolate(Vector<double>& values, double key, int lh, int rh) {
 if (values[lh] >= values[rh]) {
 error("Shouldn’t call interpolate when endpoints are the same.");
 }

 double full = values[rh] - values[lh];
 double partial = key - values[lh];
 double percentile = partial / full;

 int width = rh - lh + 1;
 return lh + percentile * width; // downcast to int on the way out
}

static int search(Vector<double>& values, double key) {
 int lh = 0;
 int rh = values.size() - 1;

 while (lh <= rh && key >= values[lh] && key <= values[rh]) {
 if (values[lh] == values[rh]) return lh;
 if (key == values[rh]) return rh;
 int pos = interpolate(values, key, lh, rh);
 if (values[pos] == key) return pos;
 if (values[pos] > key) rh = pos - 1;
 else lh = pos + 1;
 }

 return -1;
}

