
CS106B Handout 24 

Autumn 2012 October 26th, 2012 

Assignment 4: Sort Detective 
Kudos to Julie Zelenski and Eric Roberts for the handout. 

 
Sorting algorithms are about as fundamental to computer science as the computer itself.  It 
has been claimed that computers spend about a quarter of their time sorting, so it makes 
sense that we spend some time understanding how that time is spent.  There are many 
other algorithms (searching and order statistics, to just name two of them) that can be 
implemented much more efficiently on sorted data.  And sorting is just plain neat, because 
there are many different techniques (divide-and-conquer, partitioning, etc.) that lead to 
novel algorithms, and those techniques often can be repurposed to other tasks. The large 
numbers of algorithms gives us lots to study, especially when considering the tradeoffs 
offered in terms of efficiency, operation mix, code complexity, best/worse case inputs, and 
so on.  Your next task allows you to study a set of sorting algorithms to gain insight as to 
how they operate. 
 

Due: Friday, November 2nd at 3:00 p.m. 
 
Part A — Sort Detective 

Back in our secondary school days, chemistry students were often given an unknown 
compound and asked to figure out what it was via qualitative analysis.  For this assignment, 
your job is to take several mystery algorithms and figure out what they are by analyzing 
their computational properties in much the same way. 
 
We give you a compiled library containing five sorting routines named mysterySort1, 
mysterySort2, and so on.  Each function is designed to take a Vector of numbers and 
sort elements into ascending order.  What’s different about them is that each is backed by a 
different algorithm.  Specifically, the algorithms used are (in alphabetical order): 
 

• bubble sort 
• insertion sort 
• mergesort 
• quicksort 
• selection sort 

 

We talked about four of these in class, and they are covered in Chapter 10 of your reader 
(insertion sort appears as Exercise 10-2). Bubble sort—the only one we’ve not discussed—
has an interesting story.  It’s a simple O(n2) algorithm that works by repeatedly stepping 
through the elements to be sorted, comparing two neighboring items at a time and 
swapping them if they are out of order. The pass through the elements is repeated until 
nothing moves.  The algorithm gets its name from the way elements bubble left and right to 
the correct position. 
 



  2  

Here is pseudo-code for the bubble sort algorithm: 
 

loop doing passes over the elements until sorted 
 a pass goes from start to end 
   compare each adjacent pair of elements 

 if the two are out of order, swap 
         if no pairs were exchanged on this pass, you're done 

 
Bubble sort is pretty weak as far as sorting algorithms go, but for some strange reason 
introductory courses like talking about it anyway.  Owen Astrachan, a friend and colleague 
of mine at Duke, once presented a fascinating "archaeological excavation" of the bubble 
sort, trying to find out why this unspectacular approach to sorting is so popular.  His 
research turned up little more than tradition, which I guess makes bubble sort mostly a 
hazing ritual for computer scientists. 
 
Your job for the next week: figure out which algorithm backs each mystery sort.  Your 
submission should simply state what algorithm is used behind each of mysterySort1 
through mysterySort5, and you must also support your work by explaining why you 
know what you know. 
 
To a certain extent, you’re on your own in terms of figuring out how to run these 
experiments. However it should be clear that timing provides a very important clue. The 
difference between an O(n2) algorithm and O(n log n) one will certainly be evident for 
very large input sizes.  Moreover, some of these algorithms work more quickly depending 
on the sequence’s initial configuration, so carefully preparing different inputs and 
comparing the results will provide some good information.  Our mystery sorting routines 
also include a feature that allows you to specify a maximum amount of time for the sort to 
run. By choosing an appropriate value, you can stop the sort midstream, and then use the 
debugger (or print statements) to examine the partially sorted data and try to determine the 
pattern with which the elements are being rearranged. Through a combination of these 
types of experiments, you should be able to figure out which algorithm is which and 
support your conclusions with confidence. 
 
Timing an operation 

Gauging performance by measuring elapsed time (e.g. using your watch) is pretty bad and 
can be impacted by other applications running on your computer.  A better way to 
measure elapsed system time for programs is to use the standard clock function, which is 
exported by the standard ctime interface. The clock function takes no arguments and 
returns the amount of time the processing unit of the computer has used in the execution of 
the program. The unit of measurement and even the type used to store the result of clock 
differ depending on the type of machine, but you can always convert the system-dependent 
clock units into seconds by using the following expression: 
 

double(clock()) / CLOCKS_PER_SEC 
 



  3  

If you record the starting and finishing times in the variables start and finish, you can 
use the following code to compute the time required by a calculation: 
 

#include <ctime> 
 
int main() { 
 double start = double(clock()) / CLOCKS_PER_SEC; 
 . . . Perform some calculation . . . 
 double finish = double(clock()) / CLOCKS_PER_SEC; 
 double elapsed = finish - start; 
} 

 
Unfortunately, calculating the time requirements for a program that runs quickly requires 
some subtlety, because the system clock unit isn’t precise enough to measure the elapsed 
time.  For example, if you used this strategy to time the process of sorting 10 integers, the 
odds are good that the time value of elapsed at the end of the code fragment would be 0. 
The reason is that the processing unit on most machines can execute many instructions in 
the space of a single clock tick—almost certainly enough to sort 10 elements.  Because the 
system’s internal clock may not tick in the interim, the values recorded for start and 
finish are likely to be the same. 
 
One way to get around this problem is to repeat the calculation many times between the 
two calls to the clock function. For example, if you want to determine how long it takes 
to sort 10 numbers, you can perform the sort-10-numbers experiment 1000 times in a row 
and then divide the total elapsed time by 1000.  This strategy gives you a timing 
measurement that is much more accurate.  Part of your job is figuring out how many times 
you need to perform the sort operation for different-sized inputs in order to get reasonably 
accurate results. 
 
The Write-Up 

You are to identify the mystery sorts and justify your conclusions.  Your write-up should 
demonstrate an understanding of the sorting algorithms and should also identify how their 
differences are realized by your experiments.  Please keep things low-key (i.e. no need for 
multi-color graphs with dozens of data points).  But you should write in clear English 
sentences and include a reasonable amount of detail.  If your experiments are well chosen, 
your write-up can still be pretty short. 
 
References 

 Astrachan, Owen. Bubble Sort: An Archaeological Algorithmic Analysis. Technical Symposium on Computer 
Science Education, 2003. 

 
 
 



  4  

Part B — Write your own generic sort 

In lecture and in the reader, the sort functions operate on vectors of numbers. In practice, 
we also need to sort other types of data.  Writing a new sorting routine for each type is 
clearly not desirable.  C++ templates allow you to write a single polymorphic function 
capable of handling different data types. 
 
For this part, you are to write a fully generic sorting function. It should take a reference to a 
Vector<Type> and it should just assume that Type plays well with < (though you 
shouldn’t assume it plays well with >, ==, !=, and so forth). 

 
template <typename Type>  
void sort(Vector<Type>& v) 
 

Here's the twist: we want you to implement a different algorithm than the ones we've 
already discussed.  There are many sorting algorithms out there, so rather than deciding 
which one you should implement, we are granting you the authority to do a little research 
and choose one that interests you.  Living in the Information Age, you have many great 
resources you can draw from.  Here are a several names to help you get starter: 
 

o bingo sort 
o comb sort 
o gnome sort 
o heap sort 
o library sort (relative newcomer, published in 2004) 
o fancy mergesort (variants include in-place, k-way, bottom-up, natural, etc.) 
o shaker sort (usually means bi-directional Bubble, but also sometimes bi-directional 

selection) 
o shell sort (or variants brick sort and shake sort) 
o strand sort (could be implemented using our container classes to manage the 

strands) 
o fancy quicksort (i.e. improvements in pivot choice/partitioning strategy/hybrid 

crossover/etc.) 
o Or another of your own choosing or something you designed yourself… surprise us! 

  
Here are a few useful web sites on algorithms that might help you get started: 
 
 Wikipedia  
  http://en.wikipedia.org/wiki/Sort_algorithms 
 NIST  
  http://www.nist.gov/dads/HTML/sort.html 
 Open Directory Project 
  http://www.dmoz.org/Computers/Algorithms/Sorting_and_Searching/ 
 Open Source Software Educational Society 
  http://www.softpanorama.org/Algorithms/sorting.shtml 



  5  

 
As you search da Internets, you will come across algorithms, animations, pseudo-code, and 
even full implementations in a variety of programming languages. You can make use of any 
of these, as long as you properly cite your references. However, we strongly recommend 
implementing the algorithm yourself (starting from pseudo-code or a high-level description) 
rather than copying some existing code line-for-line.  A word of caution: don't believe 
everything you read!  The web isn't exactly known for its fact checking and even textbooks 
and published articles (and Stanford lectures :-) have been known to have errors in them.  
As CS legend Don Knuth says "An algorithm must be seen to be believed".  Implement and 
test carefully! 
 
We recommend that you first implement your sort to operate on Vectors of integers. 
Once that's done, go back and make the necessary modifications to transform it into a 
generic template version that relies on nothing more than < to compare elements.  Be sure 
to test the generic version on several different data types known to support operator<, so 
you are confident it can handle anything you throw at it. 
 
Once you’ve finished, cut and paste the code into your write-up and include a short 
paragraph describing it. What is the Big-O running time?  How does it compare to other 
sorts within its Big-O class?  Does it have any best/worst-case inputs?  What mix of 
operations (compare/swap/function calls) does it use?  Did you make any optimizations or 
improvements when implementing it?  How complicated is it?  What are its strengths and 
weaknesses? 
 
Special Note: Honor Code 

For this assignment, we are encouraging you to use outside sources.  Some of the 
information you find may be more helpful than others, so you may be unsure what’s fair 
and what’s not fair.  Here's our take on it: we expect you to do your own independent 
inquiry, to clearly cite what resources you used to complete your work, and to understand 
and be able to explain all of the code that you submit.  We think you’ll learn more if you 
write your own implementation starting from a high-level description or from pseudo-code.  
If you do find fully operational code and choose to adapt it, you should clearly indicate 
that in your citation and carefully work through the code to ensure you understand it. 
When you're done, what you submit should feel like "your" code, no matter how much of 
it was already written for you. 
 
 


