
CS106B Handout 26S

Autumn 2012 October 31st – November 2nd, 2012

Section Solution

Discussion Problem 1 Solution: Planetarium Memory Trace

A snapshot of memory at the point indicated in the problem statement is presented below.
Memory drawn to the left of the dashed line is in the stack (which is where all local
variables live), and memory drawn to the right of the dashed line is in the heap (which is
where all dynamically allocated memory lives).

93.1

venus

mars

 2

Discussion Problem 2 Solution: Superheroes Then and Now

State of memory just prior to the call to barbarella:

State of memory just before the call to barbarella exits:

ironman

marineboy[0] marineboy[1]

152

9189

stack heap

ironman

marineboy[0] marineboy[1]

152

9189

stack heap

storm catwoman

507

No orphaned memory.

No orphaned memory.

 3

Lab Problem 1 Solution: Bloom Filters and Sorted String Sets

Here’s my SortedStringSet interface:

class SortedStringSet {
public:
 SortedStringSet(const Vector<int (*)(const std::string&, int)>& hashers);
 ~SortedStringSet();

 int size() const { return values.size(); }

 bool contains(const std::string& value) const;
 void add(const std::string& value);

private:
 Set<string> values;
 Vector<int (*)(const std::string&, int)> hashers;
 bool *footprints;
 int alloclength;
 int numfootprints;
 void createEmptyBloomFilter();
 void leaveFootprints(const std::string& value);
 void rehash();
};

Everything below the Set<string> values line is my own, and all of what’s new helps
to manage a Bloom filter. The two instance variables footprints and alloclength
team up to manage the Bloom filter as a manually managed array of Boolean footprints that
needs to be reallocated when we congest the filter with lots of true values.

The constructor and destructor are algorithmically straightforward. The primary reason I
decompose the constructor to call the helper createEmptyBloomFilter method is that
I need to execute the same exact code within the add method.

static const int kInitBloomFilterLength = 1001;
SortedStringSet::SortedStringSet(const Vector<int (*)(const string&, int)>& hashers) {
 this->hashers = hashers;
 alloclength = kInitBloomFilterLength;
 createEmptyBloomFilter();
}

SortedStringSet::~SortedStringSet() {
 delete[] footprints;
}

void SortedStringSet::createEmptyBloomFilter() {
 footprints = new bool[alloclength];
 for (int i = 0; i < alloclength; i++) {
 footprints[i] = false;
 }

 numfootprints = 0;
}

 4

Note that createEmptyBloomFilter assumes that alloclength has been initialized
to be the desired Bloom filter length before it’s called. As is always the case, we need to
manually zero out every entry in the footprints array, because C++ doesn’t support default
initialization like some other languages do. And because the Bloom filter is empty (e.g.
there are no trues anywhere in the array), numfootprints is set to 0.

The implementation of contains is potentially framed as a call to contains on the
encapsulated Set<string>. But before we commit to the more expensive
Set<string>::contains call, we examine the Bloom filter to see if the expected set of
footprints have been left by the accumulation of all prior add calls. If they haven’t been,
we know there’s no way the supplied string will be in the master Set. If they have
been, then and only then is it sensible to examine the master Set to see if the referenced
string is truly and officially present.

bool SortedStringSet::contains(const string& value) const {
 for (int i = 0; i < hashers.size(); i++) {
 int hash = (hashers.get(i))(value, alloclength); // get works, [] doesn’t
 if (!footprints[hash]) {
 return false;
 }
 }

 return values.contains(value);
}

The implementation of add is more complicated, because we need to check to see if the
Bloom filter is congested with a high fraction of footprints. Before we go on stamping
down even more footprints, we need to check if there are more trues than falses. If so,
we allocate a much larger filter, rehash all existing strings to leave new footprints, and
dispose of the old filter. Whether or not we got a new filter, we need to leave some
footprints on behalf of the supplied string, and then add it to the master Set.

static const double kSaturationFactor = 0.50;
void SortedStringSet::add(const string& value) {
 if (numfootprints > kSaturationFactor * alloclength) rehash();
 leaveFootprints(value);
 values.add(value);
}

void SortedStringSet::rehash() {
 delete footprints;
 alloclength *= hashers.size(); // heuristic: multiply by number of hashers
 createEmptyBloomFilter();
 foreach (string value in values) leaveFootprints(value);
}

void SortedStringSet::leaveFootprints(const string& value) {
 for (int i = 0; i < hashers.size(); i++) {
 int hash = hashers[i](value, alloclength);
 if (!footprints[hash]) numfootprints++;
 footprints[hash] = true;
 }
}

