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Fun With Linked Lists 
This handout was written by Julie Zelenski and Jerry Cain. 

 
This material is introduced in Section 12.2 of the reader.  Eventually we’ll see that linked 
lists (and more generally, linked structures) are used to back the Queue, the Set, and the 
Map).  But linked lists exist outside the container framework, so it’s important we 
understand the mechanics involved in building, iterating over, and otherwise manipulating 
them. 

 
Simple Linked Lists 

First, here's our node definition: 
 
struct entry { 
 string name; 
 string address; 
 string phone; 
 entry *next; 
}; 

 
Here are the basic operations for creating and printing a single entry: 

 
static entry *createEntry() { 

 string name = getLine("Enter name (or return to quit): "); 
 if (name.empty()) return NULL; 
 entry *ent = new entry; 
 ent->name = name; 
 ent->address = getLine("Enter address: "); 
 ent->phone = getLine("Enter phone: "); 
 ent->next = NULL; // initialize field to show no one follows 
 return ent; 
} 

  
static void printAddress(const entry *ent) { 
 cout << ent->name << endl; 
 cout << ent->address << endl; 
 cout << ent->phone << endl; 
} 

 
Let's start with the unsorted version of the linked list of phone book entries.  In creating the 
list, we prepend each new entry to the front of the list, since that's pretty easy to do. 
 

static entry *createAddressBook() { 
 entry *book = NULL; 
 while (true) { 
  entry *ent = createEntry(); 
  if (ent == NULL) return book; 
  ent->next = book; // set rest of list to follow new entry 
  book = ent;   // new entry becomes the head of list 
 } 
} 
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Note that in freeing the list we have to be careful to not access an entry after we’ve freed it.  
 
static void freeAddressBook(entry *book) { 
 entry *curr = book; 
 while (curr != NULL) { 
  entry *next = curr->next;  // save embedded next pointer 
  delete curr;         // free entry surrounding it 
  curr = next;    // advance curr to next entry 
 } 
} 

 
We can use the idiomatic for loop, linked list traversal to print each address: 
 

static void printAddressBook(const entry *book) { 
 for (const entry *curr = book; curr != NULL; curr = curr->next) { 
  printAddress(curr); 
 } 
} 

 

A brute-force linear search can be used to look up an entry by name: 
 

static entry *findEntry(entry *book, const string& name) { 
 for (entry *curr = book; curr != NULL; curr = curr->next) { 
  if (curr->name == name) { 
   return curr; 
  } 
 } 
 
 return NULL; 
} 

 
Now, let’s reconsider the decision to maintain an unsorted list and instead work to keep the 
list of entries in alphabetical order.  With this change, we can rewrite our findEntry 
function to be a bit smarter.   We use string::compare to determine if we have an exact 
match between the name of interest and the name within the current entry.  We can also 
determine if we’ve passed where the name of interest would need to be, and bail early if we 
know we’re never going to find it: 
 

static entry *findEntryInSorted(entry *book, const string& name) { 
 for (entry *curr = book; curr != NULL; curr = curr->next) { 
  int cmp = name.compare(curr->name); 
  if (cmp == 0) return curr; // exact match right here 
  if (cmp < 0) return NULL; // passed position & didn't find it 
 } 
  
 return NULL; // finished off list and didn't find it 
} 

 
Here’s the tricky part.  We need a function that’ll build the list up while preserving 
alphabetical ordering.  The simple prepend-to-front approach won't work here, as we need 
to splice the entry somewhere into the middle of the list.  The loop we wrote for findEntry 
can find the appropriate position for us, but it’ll go one beyond where we need to stop.  
After the loop, curr points to the entry that will follow ent in the list.  Given the forward-



  3  

chaining nature of linked lists—at least as they’re currently defined—we have no easy way to 
get to the entry behind to the one identified by findEntry. 
 
How about this? We’ll maintain two pointers while walking down the list, using the second 
pointer to track the previous entry.  After the loop, prev will point to the entry that should 
precede ent, and curr will point to the one that should come after it.  We need to splice 
ent right in between these two.  This means attaching curr to follow the ent and setting 
ent to follow prev.  It’s certainly possible that prev is NULL (when ent is inserted at the 
head of the address book), and we need to handle that case specially.  Since this will require 
changing the head of the entire list, we need to pass the head pointer by reference, 
necessitating the entry *&! 
 
static void insert(entry *& book, entry *ent) { 
 entry *curr;         // needs to live beyond for loop, so declare here 
 entry *prev = NULL;  // first entry has no predecessor 
 for (curr = book; curr != NULL; curr = curr->next) { 
  if (ent->name < curr->name) break; // found place! 
  prev = curr; 
 } 
     
 // now, "prev" points to one before ent, "next" is right after 
 ent->next = curr; // works even if curr is NULL 
 if (prev != NULL) 
  prev->next = ent; 
 else 
  book = ent;     // note the special case! 
} 

 
Now's a good time to think through the special cases and make sure the code handles them 
correctly.  What happens if the entry is inserted at the very end of the list?  What about at the 
very beginning?  What if the list is entirely empty? 
 
Here's how we would call the insertion function to build a sorted address book: 
 
static entry *buildSortedBook() { 
 entry *book = NULL; 
 while (true) { 
  entry *ent = createEntry(); 
  if (ent == NULL) return book; 
  insert(book, ent);     // note book is passed by reference! 
 } 
} 

 
Deleting is also tricky.  We need to find the entry to delete and then carefully splice it out of 
the list and free its memory.  Again, we're going to carry two pointers down the list to find 
the entry to delete and the entry that precedes it.  If we don't find the entry at all, we bail.  
Once we have the entry and its previous neighbor, we can wire up everything to circumvent 
the entry being killed.  Again, we have the special case of deleting the first entry in the list. 
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static void deleteEntry(entry *& book, const string& name) { 
 entry *curr; 
 entry *prev = NULL; 
 for (curr = book; curr != NULL; curr = curr->next) { 
  int cmp = name.compare(curr->name); 
  if (cmp == 0) break;  // found it 
  if (cmp < 0) return;  // passed position, didn't find it 
  prev = curr; 
 } 
     
 if (curr == NULL) return; // we never found it 
 if (prev != NULL) 
  prev->next = curr->next; 
 else 
  book = curr->next; // recall that list is a reference ☺ 
 delete curr;    // free all memory associated with this entry 
} 

 
You might note that find, inserting, deleting all start with a very similar loop, and a good 
instinct is to want to unify them into a helper function.  This function could be given a list 
and a name and would find the relevant entry within the list.  It could return the two 
surrounding entries by reference and use them to do linked list surgery. 
 


