
CS106B Handout 30

Autumn 2012 November 5th, 2012

Section Handout

Discussion Problem 1: Braided Lists

Write a function called braid that takes the leading address of a singly linked list, and
weaves the reverse of that list into the original.

struct node {
 int value;
 node *next;
};

Here are some examples:

list list after call braid(list)

1 4 2 1 2 4 4 2 1

3 3 3

1 3 6 10 15 1 15 3 10 6 6 10 3 15 1

You have this page and the next page to present your solution.

static void braid(node *list);

Discussion Problem 2: append Two Ways

Assume the following node definition:

struct node {
 int value;
 node *next;
};

and consider the following two recursive functions, which differ only by the placement of a
single &. (Normally tail recursion is a no-no, but I’m using here to exercise your
understanding of memory and references.)

Presumably, each exists with the intent of tacking the node addressed by tail to the end
of the full list addressed by list. append2 works, and append1 doesn’t.

void append1(node *list, node *tail) {
 if (list == NULL) {
 list = tail;
 } else {
 append1(list->next, tail);
 }
}

void append2(node *& list, node *tail) {
 if (list == NULL) {
 list = tail;
 } else {
 append2(list->next, tail);
 }
}

 2

Assume the following illustration captures exactly how variables mylist and mytail
[each of type node *] have been initialized just prior to a call to one of the two append
functions:

We want you to draw the state of memory just before list = tail executes to see exactly how
it is that append1(mylist, mytail) fails even though append2(mylist, mytail)
succeeds.

a. First draw the state of memory as the primary call to append1(mylist, mytail)

bottoms out and just before its list = tail statement executes. You’ll want to draw
all of the parameters for all four function calls, being clear what each of the parameters
associated with each of the recursive calls contains.

b. Do the same thing again, this time for a primary call to append2(mylist, mytail)

[again, just before its list = tail statement executes]. Again, draw all of the
parameters for all four function calls, being clear what each of the parameters
associated with each of the recursive calls contains.

mylist

mytail

1 3 6

10

mylist

mytail

1 3 6

10

mylist

mytail

1 3 6

10

 3

Discussion Problem 3: Ranked Choice Voting

Ranked choice voting—also knows as instant runoff voting—is used in San Francisco for
mayoral elections. Rather than voting for a single candidate, those casting ballots vote for
up to three candidates, ranking them 1, 2, and 3 (or, in computer science speak: 0, 1, and
2.)

Assume you are given the following to represent a single ballot:

struct ballot {
 Vector<string> votes; // of size 1, 2, or 3; sorted by preference
 ballot *next;
 ballot *prev;
};

and that the collection of all ballots is represented as a doubly linked list. The first five of
what in practice would be tens of thousands of ballots in a real San Francisco election
might look like this:

Initially, only first place votes matter, and if a single candidate gets the majority of all first
place votes, then that candidate wins. Often, no one gets a majority of all first place votes
[There were, for instance, 16 official candidates in San Francisco’s mayoral election on
November 8th, 2011 and Ed Lee, who eventually won, only got only 31% of the first choice
votes.] In that case, the candidate with the least number of first place votes is eliminated
by effectively removing that candidate from all ballots everywhere (the rank choice voting
literature says these votes are exhausted) and promoting all second and third place votes to
be first and second place votes to close any gaps.

If, after an analysis of the ballots list above it’s determined that Phil Ting received the
smallest number of first place votes, the ballots list would be updated to look like this:

0

1

2 Dufty

Lee

Herrera

0

1 Dufty

Lee

0 Ting

0

1

2 Herrera

Ting

Lee

0

1 Lee

Ting

0

1

2 Ting

Dufty

Lee

ballots

0

1

2 Dufty

Lee

Herrera

0

1 Dufty

Lee

0 0

1 Herrera

Lee

0 Lee

0

1

2 Ting

Dufty

Lee

ballots

 4

The first two ballots were left alone, but the next three were updated to reflect Ting’s
elimination. Note the one node that included a standalone vote for Phil Ting was removed
from the list, since it no longer contains any valid votes. The two other impacted nodes
each saw candidates Dennis Herrera and Ed Lee advance from third and second to second
and first, respectively.

The process is repeated over and over again until it leaves one candidate with a majority of
rank-one votes. [On November 8th, 2011, this very process was applied 12 times before Ed
Lee prevailed with 61% of all remaining first choice votes.]

a. Implement the identifyLeastPopular function that, given a doubly linked list of

ballots called ballots, returns the name of the candidate receiving the smallest
number of first-choice votes. You may assume all ballots include at least one vote, that
no ballots ever include two votes for the same candidate, and that if two or more
candidates are tied for least popular [maybe Phil Ting and Bevan Dufty, for instance,
each get only two first-choice votes and no one got only one], then any one of them
can be returned.

static string identifyLeastPopular(ballot *ballots);

b. Next implement the eliminateLeastPopular function which, given a doubly
linked list of ballots and the name of the candidate to be eliminated, removes all
traces of the candidate from the list of ballots, removing and properly disposing of any
ballots depleted of all votes. Ensure that you properly handle the case where the first or
last ballot (or both) is removed.

static void eliminateLeastPopular(ballot *& ballots, const string& name);

 5

Lab Problem 1: Merging Lists

Write a function called mergeLists that, given two sorted linked lists of potentially different
lengths, merges the two into a single list. Your implementation shouldn’t allocate any new
memory, but should instead use the nodes making up the two originals. So, given the
following lists,

mergeLists would synthesize the following and return the address of the node
surrounding the 13.

Implement to the following record definition and prototype. Note that your
implementation shouldn’t allocate or free any nodes at all, and it should run in time that’s
proportional to the length of the final list. We’ve given you a test harness that creates two
sorted lists of varying lengths, and your job is to complete the implementation of the
mergeLists function.

struct node {
 int value;
 node *next;
};

static node *mergeLists(node *one, node *two);

18

27

45

46

58

13

45

54

66

90

94

13

18

27

45

45

54

58

66

90

94

46

