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rotateLeft(&node3); 
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Discussion Problem 1: Tree Rotations 

Given the pattern of references in a typical binary search tree, you can often improve the 
average search time using a simple technique known as rotation.  Often, references to any 
particular element in a binary search tree are clustered in time, in the sense that a request for 
some particular element is likely to be followed by many other requests for the same element 
in the near future.  Rotations can be 
used to bubble frequently accessed 
nodes toward the root of the tree, so 
subsequent searches can succeed in 
less time. 
 
Suppose that a binary search tree 
has grown to store the first seven 
integers, as has the tree drawn to 
the right.  Suppose that a program then searches for the 5.  
Clearly the search would succeed, but the standard 
implementation would leave the node in the 
same position, and later searches for the 
same element would take the same 
amount of time.   
 
A more novel implementation would anticipate 
another search for 5, and would change the pointer 
structure in the vicinity of the 5 by performing what is 
called a left-rotation.  A left rotation pivots around the link 
between a node and its parent, so that the child of the link 
rotates counterclockwise to become the parent of its 
parent.  In our example above, a left-rotation 
would change the structure according to the 
figure on the right.  Note that the 
restructuring is a local operation, in 
that only a constant number of 
pointers need to be updated.  The 
key observation is that 5 is brought 
one level closer to the root, the former parent of 5 becomes 5’s left child and in the process 
inherits what used to be the left child of 5 as its right child.  In general, these two nodes 
might occur anywhere in a binary search tree.  Notice that the binary search tree property 
is maintained. 
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a) Write a function rotateLeft which, given the address of the pointer to the parent 
(perhaps the 3 in the first illustration above), changes a constant number of pointers so 
that the right child of the referenced node (the 5 in the above illustration) becomes the 
parent.  You may assume that both the referenced parent and its right child are both 
non-NULL. 

 
struct node { 
 int value; 
 node *left; 
 node *right; 
}; 
 
static void rotateLeft(node **parentp); 

 
b) Now, using the rotateLeft operation you just wrote, along with its symmetric 

counterpart rotateRight (which you can assume works properly without actually 
writing it), implement pullToRoot, which takes a pointer to a binary search tree and 
bubbles the specified value up to the root.  You may assume that the value is actually 
present, although a particularly clever implementation would leave the tree unaltered if 
the value is missing. 

 
static void pullToRoot(node **rootp, int value); 

 
 

Discussion Problem 2: Binary Tree Synthesis 

listToBinaryTree takes a singly linked list of numbers and constructs an independent 
binary tree where the nth item of the singly linked list occupies all positions at the nth level 
of the binary tree structure.  So, if given the address of the list’s front node 
 

 

 

 

you would synthesize the following tree and return  the address of its root: 
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struct listNode { 
 int value; 
 listNode *next; 
}; 

struct treeNode { 
 int value; 
 treeNode *left; 
 treeNode *right; 
}; 
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Had there been additional elements beyond the 3, then all of the 3s in the tree would have 
had two non-NULL children, and so forth.  The product of the function you’ll write will be 
a complete, balanced, binary tree (though not binary search) where every path from the 
root to a leaf sees the same sequence of numbers as seen in the original list. 
 
For the discussion problem, you’re to write two version of this listToBinaryTree 
function: one recursive function, and one iterative one.  The recursive function is very short 
and very clean and gives birth to the tree in a depth-first manner.  The second version is 
iterative, uses a single Queue< treeNode **> as an auxiliary data structure, and builds 
up the tree of interest in a breadth-first manner.  That means that the node housing the 4 is 
allocated first, then the two nodes housing the 1s are allocated, initialized and planted as 
children of the 4 node, and then all four of the nodes holding 9s are placed, and then the 
eight nodes surrounding 3s would be placed. 
 
There are advantages to both versions, so it’s instructive to be familiar with each. 
 
a. Implement listToBinaryTree recursively.  Do not destroy or otherwise modify the 

original list.  Just use it as a read-only sequence of numbers used to recursively 
synthesize the corresponding binary tree. 
  
 static treeNode *listToBinaryTree(const listNode *head) { 
 

b. Now implement the iterative version, which should make use of a single 
Queue<treeNode **>.  The Queue<treeNode **> is used to line up the locations 
of the treeNode *s that need to be considered during the next iteration.  You have this 
and the next page for your solution.  (Hint: your Queue template has a size method 
that comes in handy.) 
 
 static treeNode *listToBinaryTree(const listNode *head) { 

 

 
Lab Problem 1: Cartesian Trees 

A Cartesian tree is a binary tree structure derived from 
an array of numbers such that the tree respects the min-
heap property (value at the parent is less than the values 
of the two children) and an inorder traversal of the tree 
produces the original array sequence.  The picture 
presented on the right (credit to Wikipedia) illustrates 
how an integer array and the corresponding Cartesian 
tree are related. 
 
Write a function called arrayToCartesianTree, 
which accepts a reference to a Vector<int> of 
unique positive integers, synthesizes the corresponding Cartesian tree, and returns its root.  
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The problem relies on the existence of the following type definition (which already exists 
within the provided cartesian-tree.h file): 
 

struct node { 
 int value; 
 node *left, *right; 
}; 

 
The starter project includes several files, only one of which you need to change.  You 
should place your implementation of inside cartesian-tree.cpp, looking only at 
cartesian-tree.h and cartesian-tree-test.cpp if you absolutely need to.  Both 
cartesian-tree.cpp and cartesian-tree-test.cpp must be included in the 
project/solution when you compile, run, and test.  (Don’t worry about freeing the trees.) 
 
Lab Problem 2: Finding Words In Character Trees 

You’re given the following node definition for a  
general binary tree of characters. 
 

struct node { 
 char ch; 
 node *left, *right;  
}; 

 
You’re interested in writing a function that  
determines whether or not a particular word can  
be found along any path from the root to the fringe.   
So, given the binary tree on the right, your function  
should be able to confirm that presence of words like "crab", "ran", "rug", "crust", 
"rust", "us", "ugh", "czar", "zero", and "zed".  "rug" and "us" are noteworthy, 
because they neither start at the root nor end along the fringe—they’re completely internal.  
("arc" doesn’t count, because it’s going the wrong way.) 
 
Write a function called wordExists, which when given the root of a character tree and a 
string confirms whether the string can be found along some downward path from the root 
to any single leaf.  In particular, it returns true when the supplied text is present and 
false otherwise.  You should return as soon as an answer can be determined, which 
means you should use recursive backtracking to prune the search. 
 

bool wordExists(const node *tree, const string& str); 
 

Update the character-tree.cpp file with your implementation of the wordExists 
function.  (You should ignore the character-tree-test.cpp file unless you’re 
stumped and want to understand why things aren’t working.  And don’t worry about 
freeing these trees either.) 
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