
CS106B Handout 36

Autumn 2012 November 26th, 2012

Tries and Lexicons
Handout written by Jerry.

I don’t want to leave you with the impression that all trees are binary, much less binary
search. You’ve already seen the PQueue modeled as an array-backed binary tree,
although binary search had nothing to do with the way elements were stored. You’ve
also seen the binomial heap, which is a binomial tree that incidentally respects a heap
property. Handout 36 presents the tree structure used to back our Lexicon.

Implementing the Lexicon

Trees can be used as the underlying implementation of a Lexicon data type—one
which stores a large collection of words and provide very efficient enter and lookup
times. The resulting structure, first developed by Edward Fredkin in 1960, is called a
trie. Over time, its pronunciation has evolved to where it is now pronounced try, even
though the name comes from the central letters of retrieval. The trie-based
implementation of the Lexicon makes it possible to determine whether a word is in
the dictionary more quickly than you can using a hash table, and it offer natural support
for confirming the presence of prefixes in a way that hash tables can’t.

On one level, a trie is simply a tree in which each node branches in as many as 256
different directions, one for each position in the ASCII table. When using a trie to back
a lexicon, the words are implicitly represented by the tree itself, each word represented
as a chain of links moving downward from the root. The root of the trie corresponds to
the empty string, and each successive level of the trie corresponds to the prefix of the
entire word list formed by appending another letter to the string represented by its
parent. The A link descending from the root leads to the sub-trie containing all of the
words beginning with A, the B link from that node leads to the sub-trie containing all of
the words beginning with AB, etc. Each node stores a true whenever the substring that
ends at that particular point is a legitimate word.

If we pretend that the English alphabet only has 7 letters (let’s say A through G) and we
further assume that the English language only has five words—be, bed, cab, cage, and
caged—then the underlying trie structure of the English Lexicon would look like that
presented on the next page.

 2

In a nutshell, we'd like to support the following dictionary
operations—basically, the same operations we've seen in the
Set template, with the added support for containsPrefix.
The interface and implementation files form the rest of this
handout.

lexicon.h

class Lexicon {
public:
 Lexicon() { root = NULL; }
 ~Lexicon() { delete root; }

 void add(const std::string& word);
 bool contains(const std::string& word) const;
 bool containsPrefix(const std::string& prefix) const;

private:
 struct node *root;
 const struct node *findNode(const std::string& str) const;
 struct node *ensureNodeExists(const std::string& str);
};

One thing that might surprise you: the declaration of the root field, which is declared
to be a pointer to a struct node. struct node isn’t actually defined yet, but in
spite of that you’re allowed to declare pointers to one anyway. The struct node tag
is an example of an incomplete type—something that hasn’t been defined yet, but
would be compatible with any data type that’s eventually fleshed out under the name

root

false
b c

false
e

true
d

true

false
a

false
b g

true false
e

true
d

true

 3

struct node. I’m operating on the premise that the decision to use a trie is so secret
that I don’t even want to expose the full struct node definition in the interface file.
We’ll see that lexicon.cpp will provide a struct node definition, and code
appearing after it will be able to deference root, allocate struct nodes, and so forth.

lexicon.cpp

struct node {
 bool isWord;
 Map<char, node *> suffixes;
 node();
 ~node();
};

node::node() {
 isWord = false;
}

node::~node() {
 foreach (char ch in suffixes) {
 delete suffixes[ch];
 }
}

Yes, we’ve revisited the struct node tag here, this time associating it with a full
record definition. Recall that structs are really just classes where everything is
public. I’ve implanted a small, obvious constructor and a clever, recursive destructor,
and left the data members as public. OO purists wince at public data members, but
it’s different here, because we’re subscribing to an OO mentality not so much to
encapsulate and hide information from a client, but to provide initialization and
destruction directives to be invoked automatically whenever new and delete are used
to create and kill off nodes. We could make the data members private, but the
node is defined specifically to assist the implementation of the Lexicon, and we don’t
want to put up artificial, academic roadblocks to get in the implementer’s way.

void Lexicon::add(const string& word) {
 ensureNodeExists(word)->isWord = true;
}

bool Lexicon::containsPrefix(const string& prefix) const {
 return findNode(prefix) != NULL;
}

bool Lexicon::contains(const string& word) const {
 const node *found = findNode(word);
 return found != NULL && found->isWord;
}

The above implementations pass the buck to findNode and ensureNodeExists
methods. containsPrefix returns true if and only if a node exists on behalf of the
provided string. contains returns true if and only if a node exists and that node
states the accumulation of characters that led to it represent a word. add needs to
ensure that a node exists on behalf of the provided character sequence and that the
isWord field within that node is true. Of course, findNode and
ensureNodeExists do the spidery crawling down the trie, and those
implementations are presented here:

 4

const node *Lexicon::findNode(const string& str) const {
 const node *curr = root;
 for (int pos = 0; pos < str.size() && curr != NULL; pos++) {
 curr = curr->suffixes.containsKey(str[pos]) ?
 curr->suffixes.get(str[pos]) : NULL;
 }

 return curr;
}

node *Lexicon::ensureNodeExists(const string& str) {
 node **currp = &root;
 int pos = 0;
 while (true) {
 if (*currp == NULL) *currp = new node;
 if (pos == str.size()) break;
 currp = &((*currp)->suffixes[str[pos]]);
 pos++;
 }
 return *currp;
}

