
CS106B Handout 37

Autumn 2012 November 26th, 2012

Section Handout

Discussion Problem 1: Quadtrees

A quadtree is a rooted tree structure where each internal node has precisely four children.
Every node in the tree represents a square, and if a node has children, each encodes one of
that square’s four quadrants.

Quadtrees have many applications in computer graphics, because they can be used as in-
memory models of images. That they can be used as in-memory versions of black and
white images is easily demonstrated via the following (borrowed from Wikipedia.org):

The 8 by 8 pixel image on the left is modeled by the quadtree on the right. Note that all
leaf nodes are either black or white, and all internal nodes are shaded gray. The internal
nodes are gray to reflect the fact that they contain both black and white pixels. When the
pixels covered by a particular node are all the same color, the color is stored in the form of
a Boolean and all four children are set to NULL. Otherwise, the node’s sub-region is
recursively subdivided into four sub-quadrants, each represented by one of four children.

Given a Grid<bool> representation of a black and white image, implement the
gridToQuadtree function, which reads the image data, constructs the corresponding
quadtree, and returns its root. Frame your implementation around the following data
structure:

struct quadtree {
 int lowx, highx; // smallest and largest x value covered by node
 int lowy, highy; // smallest and largest y value covered by node
 bool isBlack; // entirely black? true. Entirely white? False. Mixed? ignored
 quadtree *children[4]; // 0 is NW, 1 is NE, 2 is SE, 3 is SW
};

Assume the lower left corner of the image is the origin, and further assume the image is
square and that the dimension is a perfect power of two.

static quadtree *gridToQuadtree(Grid<bool>& image);

 2

Discussion Problem 2: Patricia Trees

Consider the following illustration:

What’s drawn above is an example of a Patricia tree—similar to a trie in that each node
represents some prefix in a set of words. The child pointers, however, are more elaborate,
in that they not only identify the sub-tree of interest, but they carry the substring of
characters that should contribute to the running prefix along the way. Sibling pointers
aren’t allowed to carry substrings that have common prefixes, because the tree could be
restructured so that the common prefix is merged into its own connection. By imposing
that constraint, that means there’s at most one path that needs to be explored when
searching for any given word.

The children are lexicographically sorted, so that all strings can be easily reconstructed in
alphabetical order. When a node contains a true, it means that the prefix it represents is
also a word in the set of words being represented. [The root of the tree always represents
the empty string.]

So, the tree on the preceding page stores the following words:

cranium, crazy, go, golf, golfing, goober, peg, perky, petulance, pork, and pundit.

root

false

false

"cra"

"nium" "zy"

true true

true

"go"

"lf" "ober"

true true

true

"ing"

false

"p"

false true true

"undit"
"e" "ork"

true true true

"g" "rky" "tulance"

 3

These two type definitions can be used to manage such a tree.

struct connection {
 string letters;
 struct node *subtree; // will never be NULL
};

struct node {
 bool isWord;
 Vector<connection> children; // empty if no children
};

Implement the containsWord function, which accepts the root of a Patricia tree and a
word, and returns true if and only if the supplied word is present. Even though the
connections descending from each node are sorted alphabetically, you should just do a
linear search across them to see which one, if any, is relevant. Implement your function
without recursion.

static bool containsWord(const node *root, const string& word);

Discussion Problem 3: Regular Expressions

A regular expression is a string used to match text. Regular expressions are, for our
purposes, comprised of lowercase alphabetic letters along with the characters *, +, and ?.
In regular expressions, the lowercase letters match themselves. * is always preceded by an
alphabetic character and matches zero or more instances of the preceding letter. + is
similar to *, except that it matches 1 or more instances of the preceding letter. ? states that
the preceding letter may or may not appear exactly once.

Here are some regular expressions:

grape matches grape as a word and nothing else
letters? matches letter and letters, but nothing else
a?b?c? matches a, b, c, ab, ac, bc, abc, and the empty string
lolz* matches lol, lolz, lolzz, lolzz, and so forth
lolz+ matches lolz, lolzz, lolzzz, and so forth

All of the *, + and ? characters must be preceded by lowercase alphabetic letters, or else
the regular expression is illegal.

Regular expressions play nicely with the trie data structure we began discussing in lecture
on Monday. We’ll use this exposed data structure to represent the trie:

struct node {
 bool isWord;
 Map<char, node *> suffixes;
};

 4

Write the matchAllWords function, which takes a trie of words (via its root node address)
and a regular expression as described above, and populates the supplied Set<string>,
assumed to be empty, with all those words in the trie that match the regular expression.

static void matchAllWords(const node *trie, const string& regex,
 Set<string>& matches);

Lab Problem 1: Exponential Trees

Exponential trees are similar to binary search trees, except that the depth of the node in the
tree dictates how many elements it can store. The root of the tree is at depth 1, so it
contains 1 string and two children. The root of a tree storing strings might look like this:

If completely full, a node at depth 2—perhaps the right child of the root above—might look
like this:

Generally speaking, a node at depth d can accommodate up to d strings. Those d strings
are stored in sorted order within a Vector<string>, and they also serve to distribute
all child elements across the d + 1 sub-trees.

everything < "F" everything > "F"

F

M R
E

everything > "F"
everything < "M"

everything > "R"

everything > "M"
everything < "R"

 5

Exponential trees can be generalized to store any one type, but we’ll stick to strings and
avoid the template business. We will, however, commit you to the following data
structure:

struct expnode {
 int depth; // depth of the node within the tree
 Vector<std::string> values; // stores up to depth keys in sorted order
 expnode **children; // set to NULL until node is saturated.
};

The lab project includes the definition of a class called ExponentialTree, which is a
simple string set that’s backed by the exponential tree structure we’re describing here.
The constructor, destructor, and contains method has already been implemented. Your
job is to provide a working implementation of the add method. You’ll want to update the
exponential-tree.cpp file to include your code, and to use exponential-tree-
test.cpp to exercise the full functionality. You may need to update exponential-
tree.h if you elect to add some helper methods.

Some rules:
• Each node must keep track of its depth, because the depth alone decides how many

elements it can hold, and how many sub-trees it can support.
• The string values are stored in the values vector, which maintains all of the

strings it’s storing in sorted order. We use a Vector<string> instead of an
exposed array, because the number of elements stored can vary from 0 to depth.

• children is a dynamically allocated array of pointers to sub-trees. The children
pointer is maintained to be NULL until the values vector is full, at which point the
children pointer is set to be a dynamically allocated array of depth + 1 pointers, all
initially set to NULL. Any future insertions that pass through the node will actually
result in an insertion into one of depth + 1 sub-trees.

