
CS106B Handout 39 

Autumn 2012 December 3rd, 2012 

Section Handout 
 

Discussion Problem 1: People You May Know 

Because Facebook is interested in growing out its social graph as much as possible, most 
users are presented with a list of other users who they think you might be friends with even 
though that friendship isn’t officially recorded.  That list is drawn from the set of Facebook 
users who are strictly two degrees away from you—that is, the list of your friends’ friends 
that aren’t already friends with you. 
 
Assume that the following node definition is used to represent a Facebook user: 
 

struct user { 
 int userID;    // unique 
 string name;   // not necessarily unique 
 Set<user *> friends; // assume friendship is symmetric  
}; 

 
Write a function called getFriendsOfFriends, which given the address of your node 
in the social graph, returns as a Set the collection of nodes representing those on 
Facebook who are two degrees away from you. 
 
 static Set<user *> getFriendsOfFriends(user *loggedinuser); 
 
Discussion Problem 2: Detecting Cycles 

Given access to a graph (in the form of an exposed SimpleGraph), write a predicate 
called containsCycles, which returns true if there are any cycles whatsoever in the 
graph, and false otherwise.  The ability to detect cycles, and the ability to confirm that 
the addition of an edge doesn’t introduce cycles, is important for some applications (i.e. 
Excel needs to confirm that no two cell formulas mutually depend—directly or 
eventually—on each other, and C++ compilers sometimes elect to check that no two 
header files mutually #include one an other.) 
 
For this problem (and the next one), use the exposed Node, Arc, and SimpleGraph 
record definitions defined in Chapter 18. 
 

static bool containsCycles(SimpleGraph& graph); 
 



  2  

Discussion Problem 3: Minimum Vertex Cover 

A vertex cover is a subset of an undirected graph’s vertices such that each and every arc in 
the graph is incident to at least one vertex in the subset.  A minimum vertex cover is a 
vertex cover of the smallest possible size. 
 
Consider the following graph: 
 
 
 
 
 
 
Each of the following illustrates some vertex cover (shaded, textured nodes are included in 
the vertex cover, and hollow ones are excluded): 
 
 
 
 
 
Each is technically a vertex cover, because in each, each arc touches one if not two 
vertices in the cover.  The two vertex covers on the right are each minimum vertex covers, 
because there’s no single vertex that’s attached to all arcs.  
 
Write the computeMinimumVertexCover function, which accepts a reference to an 
undirected SimpleGraph and returns a Set<Node *> identifying some minimum vertex 
cover.  Understand that because the graph is undirected, that means for every arc that leads 
from n1 to n2, there will be an arc that leads from n2 to n1.  If there are two or more 
minimum vertex covers, then you can return any one of them.  The implementation of this 
function should consider every possible vertex subset, keeping track of the smallest one 
that covers the entire graph.  For reasons just beyond the scope of the class, there is an 
overwhelming amount of evidence suggesting that there aren’t any better algorithms than 
the one that compares all node subsets to one another. 
 

static Set<Node *> computeMinimumVertexCover(SimpleGraph& graph); 
 



  3  

Lab Problem 1: Tournaments and Kings 

A complete graph is one where every single graph node is connected to every other node, 
both in the forward and backwards directions.  That is, for distinct nodes m and n, there 
exists an arc connecting m to n, and another connecting n to m. 
 
Tournament graphs are the directed graphs that come from a complete graph when we 
impose a direction on each and every arc.  Equivalently, a tournament graph results when 
one of the two edges bridging m and n—for all choices of m and n—is removed, leaving a 
clear directionality on the connection between any two nodes.  Below, on the left is a 
complete graph on five nodes, and on the right is a tournament on five nodes. 
 
 
 
 
 
 
 
 
Informally, a tournament is a visual summary of who prevailed over whom in an 
exhaustive competition of one-on-one matches, where every single person eventually 
competes—exactly once—against everyone else.  The tournament on the above right states 
that player 1 beat players 2, 3, and 4 (but not 5), that player 2 lost to everybody, and so 
forth. 
 
A tournament king is a node in a tournament representing someone who, for every other 
player, either directly prevailed over that player, or prevailed over someone who prevailed 
over that player.  In other words, a node is a king if one can travel from it to every other 
node via a path of at most 2 arcs.  So, in the above graph, player 1 is a king, because 
player 1 prevailed over players 2, 3, and 4.  And while player 1 lost to player 5—player 1’s 
only loss—player 1 triumphed over player 3, who managed to defeat player 5.  As it is, 
players 1, 3, and 5 are all kings, but players 2 and 4 are not. 
 
The test framework for this problem consists of two .cpp files: tournament-graph-
kings.cpp and tournament-graph-test.cpp. The code provided already reads in 
all graphs from provided data files, so you don’t need to worry about that.  All you need 
to do is write a function called crownTournamentKings that, given a tournament 
SimpleGraph reference, returns a set of all Node *s identifying tournament kings.  
Simple definitions for Node, Arc, and SimpleGraph are presented in graphtypes.h.  
You should update the tournament-graph-kings.cpp file with your 
implementation.  You shouldn’t need to make any changes to graphtypes.h, 
tournament-graph-test.cpp, or tournament-graph-kings.h. 
 

1 

2 

3 4 

5 

1 

2 

3 4 

5 


