
STL Iterators and Algorithms

…what?

Iterators

Iterators and Algorithms

Set<int> mySet;

// initialize mySet...

foreach (int value in mySet)
 cout << value << endl;

This code creates and initializes a set of integers, and then prints

out everything in the set. However, it uses Stanford-specific

libraries that aren’t readily available outside of CS106B.

Iterators

Iterators and Algorithms

To implement the same thing using standard C++, we’ll use an object

called an “iterator.” An iterator is intimately tied to a particular data

structure; it provides a “view” into that data structure, giving you the

means to access and modify different elements.

You can think of an iterator as a remarkably intelligent elf that lives inside

the data structure. His job is to report all the different elements that reside

in the set. At any point in time, he is standing on top of and looking at one

element. In order to do his job, he responds to two commands:

 You can ask the elf what element he’s currently looking at. He will look

down and report what he sees.

 You can ask the elf to move to the next element. He will hop from

where he is to the next spot, where he will now be standing on top of a

new element.

Iterator Syntax

Iterators and Algorithms

set<int> mySet;

// initialize mySet...

set<int>::iterator itr = mySet.begin();
while (itr != mySet.end()) {
 cout << *itr << endl;
 itr++;
}

This is equivalent to the code with the foreach, except it uses standard

C++. Note that Set<int> has become set<int> (lower case ‘s’). Also, we

#include <set> rather than #include “set.h”. The printing loop uses an

iterator, just as described before.

Iterator Syntax

Iterators and Algorithms

set<int> mySet;

// initialize mySet...

set<int>::iterator itr = mySet.begin();
while (itr != mySet.end()) {
 cout << *itr << endl;
 itr++;
}

The iterator object is a C++ object, so it has a type, highlighted above:

set<int>::iterator. We specify that it belongs in the scope of set<int>

because the iterator which understands how to traverse a set is

completely from the iterator which understands how to traverse a vector,

or a linked list. Each iterator type is specialized to understand one

particular data structure.

Iterator Syntax

Iterators and Algorithms

set<int> mySet;

// initialize mySet...

set<int>::iterator itr = mySet.begin();
while (itr != mySet.end()) {
 cout << *itr << endl;
 itr++;
}

The set (as well as the other container classes in C++) exports the

.begin() and .end() methods, both of which return special set iterators.

.end() will be explained shortly; .begin() simply returns an iterator

looking at the very first element in the set.

Iterator Syntax

Iterators and Algorithms

set<int> mySet;

// initialize mySet...

set<int>::iterator itr = mySet.begin();
while (itr != mySet.end()) {
 cout << *itr << endl;
 itr++;
}

Finally, to use the two “commands” we can give our iterator, we use the

dereference operator (*) and the increment operator (++). Dereferencing

the iterator returns a reference to whatever element the iterator is

currently looking at, while incrementing it moves it to the next element.

The syntax is intentionally similar to pointer syntax; you can almost think

of the iterator as a special sort of pointer that describes where things live

in a data structure, rather than in memory.

Iterator Syntax

Iterators and Algorithms

set<int> mySet;

// initialize mySet...

set<int>::iterator itr = mySet.begin();
while (itr != mySet.end()) {
 cout << *itr << endl;
 itr++;
}

The condition of the while loop describes how long we keep looping,

alternately reading data and moving to the next element. While it would

intuitively seem as though .end() returns an iterator looking at the last

element in the data structure, this is NOT the case. To see why, consider

what happens if we replace the condition of the while loop with true.

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

while (true) {
 cout << *itr << endl;
 itr++;
}

Above is the modified loop code. Suppose we are iterating over some

container with the five elements listed below. We will animate what exactly

happens with the help of our furry friend, Wile E. Coyote.

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

The loop has three main components: a condition check, the data access,

and the increment. The corresponding bits of code are shown above. Wile

E. Coyote starts off at the beginning of the container.

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

0

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

1

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

2

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

3

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

4

Wile E. Coyote has just read the last element in the container. Danger

abounds! He is about to increment and step off the end of the container…

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

…but that’s okay! It turns out, Wile E. Coyote never falls immediately when

he runs off the edge of a cliff. In fact, he will keep running…

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

…and stay perfectly safe, as long as he keeps running…

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

uh oh…

…until he looks down. The equivalent action by the iterator is the data

access by the dereference operator.

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

true *itr itr++

Once he looks down, Wile E. Coyote falls and is mildly injured. When we call

*itr where itr points somewhere bad, the program might crash, or it might

return garbage data.

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

while (itr != mySet.end()) {
 cout << *itr << endl;
 itr++;
}

STOP

end()
To fix this loop, we’ll replace true with a check that tells us when

Wile E. Coyote has run off the end of the container. We use a

special iterator that points to the location one spot past the last

element. When Wile E. Coyote reaches this point, he’ll know not to

look down.

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

itr != mySet.end() *itr itr++

end()

STOP

Suppose Wile E. Coyote is looking at the

last element in the container. At this point, he

hasn’t reached the same location where

.end() points, so he continues iterating.

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

itr != mySet.end() *itr itr++

end() 4

STOP

The data access works fine here. It’s the last

time that it will in this loop.

STOP

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

itr != mySet.end() *itr itr++

end()
The increment takes him past the end of the

container, but that’s okay since he hasn’t yet

looked down.

STOP

Ending Iterator Loops

Iterators and Algorithms

0 1 2 3 4

condition check data access increment

itr != mySet.end() *itr itr++

end()
At this point, the condition check evaluates

to false, because he is at the same location

that .end() marks. The loop ends, and he

never makes the mistake of looking down,

so he’s completely safe.

Universal Iterator Syntax

Iterators and Algorithms

Iterators for any STL-compliant container all share the same syntax for

reading/writing and increment. For example, the three loops below print the

contents of a set, a vector, and a linked list, respectively.

set<int>::iterator itr = mySet.begin();
while (itr != mySet.end()) {
 cout << *itr << endl;
 itr++;
}

vector<int>::iterator itr = myVector.begin();
while (itr != myVector.end()) {
 cout << *itr << endl;
 itr++;
}

list<int>::iterator itr = myList.begin();
while (itr != myList.end()) {
 cout << *itr << endl;
 itr++;
}

In all three cases, only the iterator type and the name of the container change.

Why iterators?

Iterators and Algorithms

-ithms!

The reason universal iterator syntax is important because of the role they

play in the use of STL algorithms. “Algorithm” is a general math and

programming term; in the context of C++, we’re talking about a part of the

standard libraries that provides a large variety of useful functionality we can

leverage against the data stored in containers.

STL Algorithms

Iterators and Algorithms

The STL algorithms are a group of functions that perform interesting operations

on data that you supply. For example, there are algorithms to:

 sort data

 perform linear or binary searches

 merge two sorted lists

 count the number of appearances of some particular element

…and the list goes on. The algorithms were designed not to need to know how

your data is stored, so they operate by accepting iterator ranges rather than

containers. An iterator range consists of a pair of iterators designating the start

and end of the data being supplied as input.

For example, if you wanted to sort everything in myVector, you would pass

myVector.begin() and myVector.end() into the sort algorithm.

STL Algorithms

Iterators and Algorithms

Here is some sample code which copies all elements from a set over to a

vector, and then randomly shuffles the vector elements.

 set<int> mySet;

 // initialize mySet…

 vector<int> myVector(mySet.size()); // myVector has the same size
 // as mySet

 // The first two arguments to copy are iterators describing the input
 // range. The third argument is where to write the results. myVector
 // must have enough space!
 copy(mySet.begin(), mySet.end(), myVector.begin());
 random_shuffle(myVector.begin(), myVector.end());

Magic Squares

Iterators and Algorithms

2 7 6

9 5 1

4 3 8

The following programming example, solving

magic squares, illustrates the power of

having the STL algorithms at your disposal.

A magic square is a three-by-three grid of

numbers in which each of the numbers 1

through 9 appears exactly once, as shown on

the right. A key property of valid magic

squares is that every row, every column, and

each of the two diagonals must sum up to the

same value.

In the case of the magic square on the right

(and in fact, all three-by-three magic

squares), that common sum is 15.

Magic Squares

Iterators and Algorithms

2 7 6

9 5 1

4 3 8

2 7 6 9 5 1 4 3 8

We are going to find all magic squares by brute-force checking every possible

arrangement of the numbers 1 through 9 in the grid. To make this easier

programmatically, we’ll express the grid as an array in “row-major” form,

meaning that the first row comprises the first three indices, the second row

comprises the next three, and so on. Then, we’ll just generate all possible

permutations of that array.

Permutations

Iterators and Algorithms

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1

As it turns out, there is an STL algorithm called

next_permutation that generates permutations sequentially.

It accepts an iterator range consisting of numbers with

some ordering, and rearranges them to form the “next”

permutation in the list of all possible permutations, where

those permutations are sorted in increasing order from left-

to-right.

For example, for the list (1, 2, 3), all six permutations are

ordered on the left, sorted by the first element first, second

element next, and so on. If we were to pass (1, 2, 3) into

next_permutation, it would produce (1, 3, 2). Passing that

into the algorithm would in turn produce (2, 1, 3).

Eventually, when (3, 2, 1) is the input, (1, 2, 3) is produced,

but the function returns false to indicate that it’s finished

processing all permutations.

Magic Squares

Iterators and Algorithms

next_permutation can be used in a loop to process all possible permutations of

a list of numbers. We’ll use this to solve magic squares by representing

possible squares as vectors in row-major form.

Assume that IsMagicSquare and PrintSquare are already implemented

(prototypes shown below). The former returns true if the vector passed in

represents a grid with the magic square properties, and the latter simply prints

the contents of the vector in a nice grid format.

 bool IsMagicSquare(const vector<int>& candidate);
 void PrintSquare(const vector<int>& square);

Magic Squares

Iterators and Algorithms

int main() {
 vector<int> candidate;
 for (int i = 1; i <= 9; i++)
 candidate.push_back(i);

 // sort isn’t necessary in this case, but it’s important when
 // iterating through permutations to make sure to start at
 // the beginning.
 sort(candidate.begin(), candidate.end());
 do {
 if (IsMagicSquare(candidate)) {
 cout << “Solution:” << endl;
 PrintSquare(candidate);
 }
 } while (next_permutation(candidate.begin(), candidate.end());

 return 0;
}

