
Eric Roberts Handout #22A
CS106B January 28, 2013

Solutions to Section Handout #3

Problem 1. Weights and balances

 – 2 –

Problem 2. Shortest path

Problem 3. Filling a region

 – 3 –

Problem 4. Generating multiword anagrams

 – 4 –

Problem 5. Recursion and Big-O
(a) O(N2). The outer loop will run n times. Each time through the outer loop, the inner
loop will run i times, where i runs from 0 to n - 1. A constant amount of work is done in
the body of the inner loop. This leads to the series: 0 + 1 + 2 + . . . + n - 1 which, as you
know from the selection sort analysis, is n(n - 1)/2. Keeping only the highest order term
and throwing away any constant factors gives the O(N2) computational complexity.

(b) O(1). The outer loop executes 10 times, the inner loop i times where i runs from 0 to
9, so there are ~100 multiply/add operations, but it does that same amount of work for
any value of n. Thus the computational complexity is constant with respect to n. The
constant 1 in O(1) signifies this. Constant time doesn’t necessarily mean that a function
computes its result instantly, but the function always does the same amount of work.

(c) O(log N). On each recursive call, the argument n is divided by 2. The complexity of
this operation is therefore the number of times you can divide n by 2 until you reach 1.
From the discussion of either binary search or merge sort, you know that this in O(log N).

(d) Calling mystery4("PUMPKIN") returns "NIKPMUP", which consists of the letters in
reverse order. The calls to concatenation and mystery4 (which is abbreviated here as m4
to save space) look like this:

In problems such as this one, the structure of the tree is often sufficient to compute the
complexity order. The key points to observe are:

• The work done at each level is O(N).
• There are O(log N) levels, because the string is always divided in half.

The computational complexity is therefore the same as that for the merge sort algorithm,
which is O(N log N).

