
Eric Roberts Handout #25
CS106B January 30, 2013

Practice Midterm Exam #2

Review session: Sunday, February 3, 7:00–9:00P.M., Hewlett 201 (next door)
Midterm #1: Tuesday, February 5, 3:15–5:15P.M., Braun Auditorium (Chemistry)
Midterm #2: Tuesday, February 5, 7:00–9:00P.M., CEMEX Auditorium (GSB)

Problem 1: Tracing C++ programs and big-O (10 points)
Assume that the function puzzle has been defined as follows:

int puzzle(int n) {
 if (n == 0) {
 return 0;
 } else {
 return puzzle(n - 1) + 1 + puzzle(n - 1);
 }
}

(a) What is the value of puzzle(4)?

(b) What is the computational complexity of the puzzle function expressed in terms of
big-O notation, where N is the value of the argument n. In this problem, you may assume
that n is always a nonnegative integer and that all arithmetic operators execute in constant
time.

Problem 2: Vectors, grids, stacks, and queues (10 points)
As most of you surely already know, the Japanese puzzle game Sudoku requires you to
fill in the entries in a 9×9 grid of integers so that each of the digits between 1 and 9
appears exactly once in each row, each column, and each of the smaller 3×3 squares. A
legal Sudoko grid (taken from Figure 5-13 of the reader on page 252) therefore looks
something like this:

When you write a program to check whether a Sudoku grid is legal, it simplifies the code
to decompose the problem into two phases. In the first phase, your program calls a

 – 2 –

function that extracts a row, column, or 3×3 subsquare from the entire grid and returns it
as a vector of nine integers. You can then use a single function to check the integrity of
any row, column, or subsquare.

In this problem, your task is to write the function

Vector<int> extract3x3Subsquare(Grid<int> & grid, int bigRow,
 int bigCol);

that takes a complete Sudoku grid and returns a vector containing the nine integers in the
3×3 subsquare indicated by the indices bigRow and bigCol, which correspond to the row
and column of the desired subsquare as shown in the following diagram:

For example, if grid contains the complete Sudoku grid from the previous page, calling

extract3x3Subsquare(grid, 2, 0)

should extract the nine values in the square at the lower left corner, which means that the
result should be a Vector<int> containing the following values:

[9, 6, 7, 4, 2, 3, 5, 1, 8]

In writing your solution, you may assume that the grid parameter is a 9×9 grid and that
the bigRow and bigCol parameters are both legal values between 0 and 2, inclusive. The
elements in the vector should be returned in row-major order (defined in the reader on
page 239), in which the elements from the first row appear in left-to-right order, followed
by the elements from the second row, and then the elements from the third row.

Problem 3: Lexicons, maps, and iterators (15 points)
Exercise 10 in Chapter 1 (which appears on page 54 of the reader) introduces the
hailstone sequence, which is the basis for one of the most fascinating unsolved problems
in mathematics. If you starting with a positive integer n, you can compute the terms in
the hailstone sequence by repeatedly executing the following steps:

• If n is equal to 1, you’ve reached the end of the sequence and can stop.
• If n is even, divide it by two.
• If n is odd, multiply it by three and add one.

 – 3 –

No matter what number you start with, this sequence always seems to get back to 1
eventually. So far, however, no one has yet been able to prove that claim, which is called
the Collatz conjecture.

Three years ago, the Collatz conjecture gained additional
visibility when it appeared in Randall Monroe’s xkcd. As
the cartoon at the right makes clear, many of the sequences
include common patterns. For example, all hailstone
sequences (except for 1, 2, 4, and 8, of course) go through
the value 16 and therefore share the last four elements of the
path. If you’ve followed through this path once, you don’t
need to follow it again.

Keeping track of these common patterns can make
calculating the length of hailstone sequences vastly more
efficient. Suppose, for example, that you are calculating the
number of steps in all the hailstone sequences between 1 and
100. What happens when you get to 24, which appears at the
lower left corner of the cartoon? By the time you get to this
point, you’ve already figured out that it takes nine steps to
get from 12 down to 1, so 24 must take ten steps, given that
12 is just one step away from 24. Note that the count is the
number of steps; if you start with 1, the number of steps is 0.

It’s even more interesting to follow what happens with 7, which is in the middle of the
right hand side. Here, figuring out the number of steps for 7 entails running through the
number 22, 11, 34, 17, 52, 26, 13, 40, and 20 before you come to 10, which you’ve
already encountered in counting the number of steps from 3 and 6. At this point, you
have learned an enormous amount. Given that it takes six steps to reach 1 starting at 10,
you know that 20 takes seven steps, 40 takes eight, 13 takes nine, and so forth, backwards
along the list of numbers in the chain, until you determine that there are sixteen steps in
the hailstone chain between 7 and 1. If you keep track of these values in, for example, a
Map<int,int>, you’d already know the answers for the other values in the chain.
Keeping track of previously computed values so that you can use them again without
having to recompute them is called caching.

Write a function

int countHailstoneSteps(int n, Map<int,int> & cache);

that determines the number of steps in the hailstone sequence starting at n. The second
parameter is a map containing previously computed values. Your implementation should
look up each value it encounters during the process to check whether the answer from
that point is already known. If so, it should use that previously computed value not only
to compute the current result, but also to add the counts for all the intermediate steps to
the map. Thus, if you call countHailstoneSteps with 7 as the first parameter, your
code should add the counts for 20, 40, 13, 26, 52, 17, 34, 11, 22, and 7 to the map before
returning the answer. In this example, the other numbers in the sequence (10, 5, 16, 8, 4,
and 2) are already in the map from previous calls and do not need to be added again.

 – 4 –

Problem 4: Recursive functions (10 points)
The waste of time in spelling imaginary sounds and their history
(or etymology as it is called) is monstrous in English . . .

—George Bernard Shaw, 1941

In the early part of the 20th century, there was considerable interest in both England and
the United States in simplifying the rules used for spelling English words, which has
always been a difficult proposition. One suggestion advanced as part of this movement
was the removal of all doubled letters from words. If this were done, no one would have
to remember that the name of the Stanford student union is spelled “Tresidder,” even
though the incorrect spelling “Tressider” occurs at least as often. If doubled letters were
banned, everyone could agree on “Tresider.”

Write a recursive function

string removeDoubledLetters(string str);

that takes a string as its argument and returns a new string with any consecutive substring
consisting of repeated copies of the same letter replaced by a single copy letter of that
letter. For example, if you call

removeDoubledLetters("tresidder")

your function should return the string "tresider". Similarly, if you call

removeDoubledLetters("bookkeeper")

your method should return "bokeper". And because your function compresses strings of
multiple letters into a single copy, calling

removeDoubledLetters("xxx")

should return "x".

In writing your solution, you should keep the following points in mind:

• You do not need to write a complete program. All you need is the definition of the

function removeDoubledLetters that returns the desired result.
• Your function should not try to consider the case of the letters. For example, calling

the function on the name "Lloyd" should return the argument unchanged because 'L'
and 'l' are different letters.

• Your function must be purely recursive and may not make use of any iterative
constructs such as for or while.

Problem 5: Recursive procedures (15 points)
In CS 106A, I usually include a problem on the midterm exam to check whether students
understand the precedence of operators. For example, I might ask students to evaluate
the expression

 – 5 –

9 + 7 * 5 - 3 + 1

To do so, those students would have to know that the multiplication was performed first.
Of course, I also want to make sure that the answer comes out to be some recognizable
value. In this case, for example, the expression evaluates to 42, which is “the answer to
the ultimate question of life, the universe, and everything” from Douglas Adams’s
Hitchhiker’s Guide to the Galaxy.

Generating such examples by hand is sufficiently difficult that it makes sense to use the
power of recursion to solve it algorithmically. Your job in this problem is to write a
function

void tryAllOperators(string exp, int target);

in which exp is an expression string in which the operators have been replaced by
question marks and target is the desired value. The function operates by replacing
those question marks with the four standard arithmetic operators (+, -, *, /), trying every
possible combination to see if any produce the desired target value. For example, calling

tryAllOperators("9 ? 7 ? 5 ? 3 ? 1", 42)

should produce the following output, since that is the only combination of operators that
gives 42 as a result:

If there is more than one way to produce the target value, the function should list all of
them. Thus, calling

tryAllOperators("2 ? 3 ? 5 ? 7 ? 11 ? 13", 42)

should produce the following output, since there are two ways of achieving 42:

Writing this program would be very difficult if you had to write the code to evaluate an
expression. We will do precisely that later in the quarter, but for now, you should assume
that you have a function

int evaluateExpression(string exp);

TryAllOperators
9 + 7 * 5 - 3 + 1

TryAllOperators
2 + 3 + 5 * 7 - 11 + 13

2 * 3 + 5 + 7 + 11 + 13

 – 6 –

that takes an arithmetic expression involving integers and the four arithmetic operators
and returns the calculated value. Given this function, all you have to do for this problem is

1. Recursively generate every possible expression by replacing the question marks in the

input string with each of the actual operators in turn.
2. Call evaluateExpression for each of those generated expressions.
3. Print out the expression if the result of evaluateExpression equals the target value.

