
Eric Roberts Handout #33
CS106B February 11, 2013

Answers to Midterm Exam

Congratulations! As a class, you knocked this one out of the park. We believed the
exam to be fair but not unduly easy, so most of you can take real pride in doing so well.
Given the independent corroborative evidence from the section leaders who tell me that
things are going well, I’ve decided to assign a high curve of the sort I think you deserve.
The complete histogram appears on page 2, but here are a few noteworthy statistics:

N = 388
Median = 53.0
Mean = 50.3

The scale to letter grades looks like this:

Grade Range N
A+ 59–60 64
A 55–58 109
A– 53–54 35
B+ 51–52 33
B 47–50 44
B– 44–46 27
C+ 41–43 19
C 37–40 16
C– 34–36 10
D 25–33 23
NP 00–24 8

 – 2 –

Histogram

 59
 59
 59
 59
 59
 59
 59
 59
 59
 59
 59
 59
 59
 59
 59
 59
 59
 59
 59
 59
 59
 59
 59
 58
 58
 58
 58
 58
 58
 58
 58
 58
 58
 58
 58
 58
 58
 58
 58
 58
 58
 58
 58
 58
 58
 58
 58
 54 58
 54 58
 54 58
 54 58
 54 58
 54 58
 54 58
 54 58
 54 58
 54 58
 54 58
 54 58
 54 58
 54 57
 54 57
 53 57
 53 57
 53 57
 53 57
 53 57
 53 57
 53 57
 53 57
 53 57
 53 57
 53 57
 53 57
 53 57
 53 57
 53 57
 53 57
 53 57
 53 57
 53 57
 53 57
 52 57
 52 57
 52 57
 52 57
 52 57
 49 52 57
 49 52 57
 49 52 56
 49 52 56
 49 52 56 60
 49 52 56 60
 49 52 56 60
 49 52 56 60
 49 52 56 60
 49 52 56 60
 49 52 56 60
 48 52 56 60
 48 52 56 60
 44 48 52 56 60
 44 48 52 56 60
 44 48 52 56 60
 44 48 52 56 60
 44 48 51 56 60
 44 48 51 56 60
 44 48 51 56 60
 44 48 51 56 60
 44 48 51 56 60
 43 47 51 56 60
 43 47 51 55 60
 43 47 51 55 60
 43 47 51 55 60
 43 47 51 55 60
 43 46 51 55 60
 39 43 46 50 55 60
 39 43 46 50 55 60
 34 39 43 46 50 55 60
 34 38 42 46 50 55 60
 29 34 38 42 46 50 55 60
 29 34 38 42 46 50 55 60
 28 34 38 42 46 50 55 60
 28 32 38 41 46 50 55 60
 28 32 37 41 46 50 55 60
 28 31 37 41 45 50 55 60
 28 31 37 41 45 50 55 60
 27 31 37 41 45 50 55 60
 27 30 36 41 45 50 55 60
 26 30 36 40 45 50 55 60
 18 22 25 30 36 40 45 50 55 60
 12 17 20 25 30 35 40 45 50 55 60
 11 15 20 25 30 35 40 45 50 55 60

 – 3 –

Problem 1: Tracing C++ programs and big-O (10 points)
Just like the mystery function on the first practice exam (Handout #23), this version of
mystery calculates 2n, this time using an iterative version of the raiseIntToPower
algorithm from problem 4 on that same practice exam. The result is therefore

mystery(10) → 1024

Determining the complexity order requires counting how many times the operations
inside the loop are executed as a function of N. As in the outer loop of the merge sort
algorithm, this loop repeatedly divides the value of n by two until it reaches 0. The
number of times the loop executes is therefore proportional to log2 N, which means that
the computational complexity is O(log N).

Problem 2: Vectors, grids, stacks, and queues (10 points)

 – 4 –

Problem 3: Lexicons, maps, and iterators (15 points)

Problem 4: Recursive functions (10 points)

For more details about why Catalan numbers are interesting, check out the Wikipedia
page.

 – 5 –

Problem 5: Recursive procedures (15 points)

