
Eric Roberts Handout #34
CS 106B February 11, 2013

Template Structures

Template Structures

Eric Roberts
CS 106B

February 11, 2013

Contest Results

The CS106B

Random Writer
Contest

February 2013

Templates
�• One of the most powerful features in C++ is the template

facility, which makes it possible to define functions and
classes that work for a variety of types.

�• The most common form of a template specification is

template <typename placeholder>

 where placeholder is an identifier that is used to stand for a
specific type when the definition following the template
specification is compiled.

Templates in Functions
�• Templates can be used before a function definition to create a

generic collection of functions that can be applied to values of
various types.

�• The following code, for example, creates a template for the
max function, which returns the larger of its two arguments:

template <typename ValueType>
ValueType max(ValueType v1, ValueType v2) {
 return (v1 > v2) ? v1 : v2;
}

�• The compiler will generate the code for many different
versions of max, one for each type that the client uses.

�• The function max can be used only with types that implement
the > operator. If you call max on some type that doesn�’t, the
compiler will signal an error.

Exercise: Rewrite sort as a Template
�• Rewrite the following code so that it sorts any type that

implements the < operator:

void sort(int array[], int n) {
 for (int lh = 0; lh < n; lh++) {
 int rh = lh;
 for (int i = lh + 1; i < n; i++) {
 if (array[i] < array[rh]) rh = i;
 }
 swap(array[lh], array[rh]);
 }
}

void swap(int & x, int & y) {
 int tmp = x;
 x = y;
 y = tmp;
}

Templates in Class Definitions
�• Templates are more commonly used to define generic classes.

When they are used in this way, the template keyword must
appear before the class definition and before each of the
implementations of the member functions.

�• The most inconvenient aspect of using templates to create
generic classes is that the compiler cannot process them
correctly unless it has access to both the interface and the
implementation at the same time. The effect of this restriction
is that the .h files for template classes must contain both the
prototypes and the corresponding code.

�• To emphasize the conceptual separation between the interface
and the associated implementation, you should make sure to
include an appropriate comment before the private section and
the implementation warning casual clients away from the
details.

– 2 –

A Template Version of the Stack Class
�• The first step in writing the template version of the Stack

class is to add the template keyword to the interface just
before the class definition:

template <typename ValueType>
class Stack {

 . . . body of the class . . .

};

�• Once you have made this change, each instance of the specific
type (formerly char in the CharStack class) must be replaced
by the ValueType placeholder for the generic type, as in

ValueType *elements;

 or
void push(ValueType value);

Implementing the Template Class
�• The final change necessary to implement the template class is

to add template declarations to every method body, as in the
following updated version of the constructor:

template <typename ValueType>
Stack<ValueType>::Stack() {
 capacity = INITIAL_CAPACITY;
 count = 0;
 elements = new ValueType[capacity];
}

�• Because of the restrictions that C++ imposes on template
types, the implementations of the methods need to be included
as part of the stack.h header.

Assignment and Copy Constructors
�• There is one remaining issue about creating new abstract

classes that is extremely important in practice, which is how
such objects behave if you copy them using assignment or by
passing them by value to parameters in methods.

�• The crux of the problem is that copying an abstract data object
typically needs to copy the underlying data and not just the
fields directly accessible in the object. Unfortunately, the
default interpretation in C++ is to copy only the top-level
fields, which can lead to serious errors.

�• Even though the text includes an extensive discussion of the
issues surrounding assignment and copy constructors, we
won�’t hold you responsible for these topics in CS106B. If,
however, you are applying for a job that requires you to use
C++, you absolutely need to review this material.

Shallow vs. Deep Copying
�• Suppose that you have a

Stack<int> containing three
elements as shown in the
diagram to the right.

�• A shallow copy allocates new
fields for the object itself and
copies the information from
the original. Unfortunately,
the dynamic array is copied
as an address, not the data.

�• A deep copy also copies the
contents of the dynamic array
and therefore creates two
independent structures

elements 1000

capacity 100
count 3

10
20
30

1000

. .

.

elements 1000

capacity 100
count 3

elements 2000

capacity 100
count 3

10
20
30

2000

. .

.

Implementing Deep Copy Semantics
�• When you are defining a new abstract data type in C++, you

typically need to define two methods to ensure that copies are
handled correctly:
�– The operator operator=, which takes care of assignment
�– A copy constructor, which takes care of by-value parameters

�• These methods have well-defined signatures and structures,
and the easiest thing to do is simply to copy the code on the
next slide, adapting it as necessary to account for the specific
instance variables that need to be copied in the underlying
representation.

/* Code to support deep copying for the Stack class */

template <typename ValueType>
Stack<ValueType>::Stack(const Stack & src) {
 deepCopy(src);
}

template <typename ValueType>
Stack<ValueType> & Stack<ValueType>::operator=(const Stack & src) {
 if (this != &src) {
 if (elements != NULL) delete[] elements;
 deepCopy(src);
 }
 return *this;
}

template <typename ValueType>
void Stack<ValueType>::deepCopy(const Stack & src) {
 count = capacity = src.count;
 elements = (capacity == 0) ? NULL : new ValueType[capacity];
 for (int i = 0; i < count; i++) {
 elements[i] = src.elements[i];
 }
}

Code to Implement Deep Copying

