Eric Roberts Handout #35A
CS106B February 11, 2013

Solutions to Section Handout #5

Problem 1. Implementing the array-with-gap form of the two stack model

private:
/* Constants */
static const int INITIAL_CAPACITY = 10;

/* Instance variables */

char *array; /* Dynamic array of characters */
int capacity; /* Effective size of the array */
int nBefore; /* Size of the before stack */
int nAfter; /* Size of the after stack */

/* Make it illegal to copy editor buffers */

EditorBuffer (const EditorBuffer & value) { }
const EditorBuffer & operator=(const EditorBuffer & rhs) { return *this;

/* Private method prototypes */

void pushBefore (char ch);
void pushAfter (char ch);
char popBefore();

char popAfter();

void expandCapacity();

}

/*
* File: buffer.cpp (gap-buffer version)
*

* This file implements the EditorBuffer class using the ends of a dynamic
* array to represent two stacks.

*/
#include <iostream>
#include "buffer.h"

#include "error.h"
using namespace std;

/*
* Implementation notes: Buffer constructor and destructor
*

* The constructor must set up the initial configuration of the empty
* buffer. The destructor frees the dynamic array.

*/

EditorBuffer: :EditorBuffer () {
capacity = INITIAL_CAPACITY;

array = new char[capacity];
nBefore = 0;
nAfter = 0;

}

EditorBuffer: :~EditorBuffer () {
delete[] array;




*/

voi

}

voi

}

voi

}

voi

*/

voi

}

voi

/*
*
*
*
*

*/

Implementation notes: moveCursor methods

The four moveCursor methods use push and pop to transfer values
between the two stacks.

d EditorBuffer: :moveCursorForward() {
if (nAfter != 0) {

pushBefore (popAfter());
}

d EditorBuffer: :moveCursorBackward() {
if (nBefore != 0) {

pushAfter (popBefore());
}

d EditorBuffer: :moveCursorToStart () {
while (nBefore != 0) {

pushAfter (popBefore());
}

d EditorBuffer: :moveCursorToEnd () {
while (nAfter != 0) {

pushBefore (popAfter());
}

Implementation notes: character insertion and deletion

Each of the functions that inserts or deletes characters can do so
with a single push or pop operation.

d EditorBuffer::insertCharacter (char ch) {
pushBefore (ch) ;

d EditorBuffer: :deleteCharacter () {
if (nAfter != 0) {
popAfter();

}

Implementation notes: getText and getCursor

The getText implementation uses a form of the string constructor that
takes a C-style string and a length.

string EditorBuffer::getText () const {

}

int

}

return string(array, nBefore) + string(array + capacity - nAfter, nAfter);

EditorBuffer::getCursor() const {
return nBefore;




/*
* Implementation notes: pushBefore, pushAfter, popBefore, popAfter
*
* These methods simulate the stack operation at the appropriate end
* of the array. This level of decomposition is included to make the
* stack metaphor more obvious.
*/
void EditorBuffer: :pushBefore (char ch) {
if (nBefore + nAfter == capacity) expandCapacity();
array[nBefore++] = ch;

}
void EditorBuffer: :pushAfter (char ch) ({

if (nBefore + nAfter == capacity) expandCapacity();
nAfter++;
array[capacity - nAfter] = ch;

}

char EditorBuffer: :popBefore() {
if (nBefore == 0) error("popBefore: Stack is empty");
nBefore--—;
return array[nBefore];

}
char EditorBuffer: :popAfter () {

if (nAfter == 0) error("popAfter: Stack is empty");
return array|[capacity - nAfter—-];
}
/*
* Implementation notes: expandCapacity
*
* This private method doubles the size of the array whenever the old one
* runs out of space. To do so, expandCapacity allocates a new array,
* copies the old characters to the new array, and then frees the old array.
*/
void EditorBuffer::expandCapacity () {

char *oldArray = array;
int oldCapacity = capacity;
capacity *= 2;

array = new char[capacity];
for (int i = 0; i < nBefore; i++) {
array[i] = oldArrayl[i];

}
for (int i = 0; i < nAfter; i++) {
array[capacity — i - 1] = oldArray[oldCapacity - i - 1];
}
delete[] oldArray;




Problem 2: Doubly linked lists

private:

/*

Implementation notes

list that is chained into a ring, with the dummy cell at both

*
*

* In this representation, the buffer is coded as a doubly linked
*

* the beginning and the end.

* This structure stores a single character along with links to the
* previous and next cells in the ring.

*/

struct Cell {
char ch;
Cell *prev;
Cell *next;
};

/* Data fields required for the linked-list representation */

Cell *start; /* Pointer to the dummy cell */
Cell *cursor; /* Pointer to cell before cursor */

/* Make it illegal to copy editor buffers */

EditorBuffer (const EditorBuffer & value) { }

const EditorBuffer & operator=(const EditorBuffer & rhs) { return *this; }

/*
* File: buffer.cpp (doubly linked version)
*

* This file implements the EditorBuffer class using a doubly linked
* list to represent the buffer.

*/

#include <iostream>
#include "buffer.h"
using namespace std;

/*
* Implementation notes: EditorBuffer constructor
*
* This function initializes an empty editor buffer, represented
* as a doubly linked list. In this implementation, the ends of
* the linked list are joined to form a ring, with the dummy cell
* at both the beginning and the end. This representation makes
* it possible to implement the moveCursorToEnd method in constant
* time, and reduces the number of special cases in the code.
*/
EditorBuffer: :EditorBuffer () {
start = cursor = new Cell;
start->next = start;
start->prev = start;




Implementation notes: EditorBuffer destructor

The destructor must delete every cell in the buffer. Note
that the loop structure is not exactly the standard idiom for
processing every cell within a linked list, because it is not
legal to delete a cell and later look at its next field.

* * Ok %k * * *

*/

EditorBuffer: :~EditorBuffer () {
Cell *cp = start->next;

while (cp != start) {
Cell *next = cp—>next;
delete cp;
cp = next;

}
delete start;

Implementation notes: cursor movement

*
*
* In a doubly linked list, each of these operations runs in
* constant time.

void EditorBuffer: :moveCursorForward() {
if (cursor->next != start) {
cursor = cursor->next;
}
}

void EditorBuffer: :moveCursorBackward() ({
if (cursor != start) {
cursor = cursor->prev;
}
}

void EditorBuffer: :moveCursorToStart () {
cursor = start;

}

void EditorBuffer: :moveCursorToEnd () {
cursor = start->prev;

}




/*
* Implementation notes: insertCharacter, deleteCharacter
*

* This code is much like that used for the traditional linked
* list except that more pointers need to be updated.

*/

void EditorBuffer: :insertCharacter (char ch) {
Cell *cp = new Cell;
cp—->ch = ch;

cp—->next = cursor->next;
cp—>prev = cursor;
cursor—>next->prev = cp;
cursor—->next = cp;
cursor = cp;

}

void EditorBuffer::deleteCharacter () {

if (cursor->next != start) {
Cell *oldcell = cursor->next;
cursor->next = oldcell->next;
cursor—->next->prev = cursor;

delete oldcell;

/*
* Implementation notes: getText
*

* This method returns the string contained in the buffer by walking
* through the linked list and concatenating each of the characters.

*/

string EditorBuffer::getText () const {
string result = "";
for (Cell *cp = start->next; cp != start; cp = cp—->next) {
result += cp->ch;
}

return result;

/*
* Implementation notes: getCursor
*

* This method counts the number of times you need to advance a pointer
* from the start before reaching the cursor position.

*/
int EditorBuffer::getCursor() const ({
int n = 0;
for (Cell *cp = start; cp != cursor; cp = cp->next) {
n++;

}

return n;




