In our Last Episode . . .

- In Friday’s class, I showed how hashing makes it possible to implement the `get` and `put` operations for a map in $O(1)$ time.
- Despite its extraordinary efficiency, hashing is not always the best strategy for implementing maps, because of the following limitations:
 - Hash tables depend on being able to compute a hash function on some key. Expanding the hash-function idea so that it applies to types other than strings is subtle.
 - Using `foreach` on hash tables does not deliver the keys in any sensible order. Even when the keys have a natural order (such as the lexicographic order used with strings), the hash table implementation of `foreach` cannot take advantage of that fact.
- The goal for today is to explore another representation that supports iterating through the elements in order.

Analyzing the Failure of Sorted Arrays

- One of the strategies I outlined last Friday for implementing a map was to use a sorted array to hold the key-value pairs. Given that representation, binary search made it possible to find a key in $O(\log N)$ time.
- The problem with the sorted array strategy was that inserting a new key required $O(N)$ time to maintain the order.
- In the editor buffer, linked lists solved the insertion problem. Unfortunately, turning a sorted array into a linked list makes it impossible to apply binary search because there is no way to find the middle element.
- But what if you could point to the middle element in a linked list? That question gives rise to a new structure called a tree, which provides the key to implementing a map with $O(\log N)$ performance for both the `get` and `put` operations.

Trees Are Everywhere

- Trees appear in many familiar contexts beyond family trees. The picture at the right comes from Darwin’s notebooks and shows his early conception of an evolutionary tree.
- Trees also form the basis for the class hierarchies used in object-oriented programming languages like Java and C++.
- In each of these contexts, trees begin with a single root node and then branch outward repeatedly to encompass any other nodes in the tree.

Trees as a Recursive Data Structure

- If you think about trees as a programmer, the following definition is extremely useful:
 - A tree is a pointer to a node.
 - A node is a structure that contains some number of trees.
- Although this definition is clearly circular, it is not necessarily infinite, either because
 - Tree pointers can be `NULL` indicating an empty tree.
 - Nodes can contain an empty list of children.
- In C++, programmers typically define a structure or object type to represent a node and then use an explicit pointer type to represent the tree.

This example is useful for defining terminology:
- William I is the root of the tree.
- Adela is a child of William I and the parent of Stephen.
 - Robert, William II, Adela, and Henry I are siblings.
- Henry II is a descendant of William I, Henry I, and Matilda.
- William I is an ancestor of everyone else in this tree.
Binary Search Trees

- The tree that supports the implementation of the `Map` class is called a **binary search tree** (or `BST` for short). Each node in a `BST` has exactly two subtrees: a **left subtree** that contains all the nodes that come before the current node and a **right subtree** that contains all the nodes that come after it. Either or both of these subtrees may be `NULL`.
- The classic example of a binary search tree uses the names from Walt Disney’s *Snow White and the Seven Dwarves*:

![Diagram of a binary search tree: Doc, Grumpy, Sleepy, Bashful, Dopey, Happy, Sneezy.]

A Simple BST Implementation

- To get a sense of how binary search trees work, it is useful to start with a simple design in which keys are always strings.
- Each node in the tree is then a structure containing a key and two subtrees, each of which is either `NULL` or a pointer to some other node. This design suggests the following definition:

```c
struct Node {
    string key;
    Node *left, *right;
};
```

- The code for finding a node in a tree begins by comparing the desired key with the key in the root node. If the strings match, you’ve found the correct node; if not, you simply call yourself recursively on the left or right subtree depending on whether the key you want comes before or after the current one.

```c
Node *findNode(Node *t, string key) {
    if (t == NULL) return NULL;
    if (key == t->key) return t;
    if (key < t->key) {
        return findNode(t->left, key);
    } else {
        return findNode(t->right, key);
    }
}
```

Exercise: Building a Binary Search Tree

Diagram the BST that results from executing the following code:

```c
Node *colors = NULL;
insertNode(colors, "red");
insertNode(colors, "orange");
insertNode(colors, "yellow");
insertNode(colors, "green");
insertNode(colors, "blue");
insertNode(colors, "indigo");
insertNode(colors, "violet");
```

Traversal Strategies

- It is easy to write a function that performs some operation for every key in a binary search tree, because recursion makes it simple to apply that operation to each of the subtrees.
- The order in which keys are processed depends on when you process the current node with respect to the recursive calls:
 - If you process the current node before either recursive call, the result is a **preorder traversal**.
 - If you process the current node after the recursive call on the left subtree but before the recursive call on the right subtree, the result is an **inorder traversal**. In the case of the simple BST implementation that uses strings as keys, the keys will appear in lexicographic order.
 - If you process the current node after completing both recursive calls, the result is a **postorder traversal**. Postorder traversals are particularly useful if you are trying to free all the nodes in a tree.
Exercise: Preorder Traversal

```cpp
void preorderTraversal(Node *t) {
    if (t != null) {
        cout << t->key << endl;
        preorderTraversal(t->left);
        preorderTraversal(t->right);
    }
}
```

Exercise: Inorder Traversal

```cpp
void inorderTraversal(Node *t) {
    if (t != null) {
        inorderTraversal(t->left);
        cout << t->key << endl;
        inorderTraversal(t->right);
    }
}
```

Exercise: Postorder Traversal

```cpp
void postorderTraversal(Node *t) {
    if (t != null) {
        postorderTraversal(t->left);
        postorderTraversal(t->right);
        cout << t->key << endl;
    }
}
```

A Question of Balance

- Ideally, a binary search tree containing the names of Disney’s seven dwarves would look like this:

![Binary Search Tree](image)

- If, however, you happened to enter the names in alphabetical order, this tree would end up being a simple linked list in which all the left subtrees were `NULL` and the right links formed a simple chain. Algorithms on that tree would run in $O(N)$ time instead of $O(log N)$ time.

- A binary search tree is **balanced** if the height of its left and right subtrees differ by at most one and if both of those subtrees are themselves balanced.

Illustrating the AVL Algorithm

```
H
He
Li
Be
B
C
```

Illustrating the AVL Algorithm

```
H
He
Li
Be
B
C
```
Tree-Balancing Algorithms

- The AVL algorithm was the first tree-balancing strategy and has been superseded by newer algorithms that are more effective in practice. These algorithms include:
 - Red-black trees
 - 2-3 trees
 - AA trees
 - Fibonacci trees
 - Splay trees

- In CS106B, the important thing to know is that it is possible to keep a binary tree balanced as you insert nodes, thereby ensuring that lookup operations run in $O(\log N)$ time. If you get really excited about this kind of algorithm, you’ll have the opportunity to study them in more detail in CS161.