
Eric Roberts Handout #40
CS106B February 20, 2013

Section #6—Trees

For problems 1, 2, and 3, assume that BSTNode is defined as follows:

struct BSTNode {
 string key;
 BSTNode *left, *right;
};

1. Tracing binary tree insertion (Chapter 16, review question 9, page 724)
In the first example of binary search trees, the text uses the names of the dwarves from
Walt Disney’s 1937 classic animated film Snow White and the Seven Dwarves. Dwarves,
of course, occur in other stories. In J. R. R. Tolkien’s The Hobbit, for example, 13
dwarves arrive at the house of Bilbo Baggins in the following order:

Dwalin, Balin, Kili, Fili, Dori, Nori, Ori, Oin, Gloin, Bifur, Bofur, Bombur, Thorin

Diagram the binary search tree you get from inserting these names into an empty tree in
this order. Once you have finished, answer the following questions about your diagram:

1a. What is the height (defined on page 691 as the number of nodes in the longest path

from the root to a leaf) of the resulting tree?

1b. Which nodes are leaves?

1c. Which nodes, if any, are out of balance (in the sense that the subtree rooted at that
node fails to meet the definition of balanced trees on page 706)?

1d. Which key comparisons are required to find the string "Gloin" in the tree?

2. Calculating the height of a binary tree (Chapter 16, exercise 6, page 730)
Write a function

int height(BSTNode *tree);

that takes a binary search tree and returns its height.

3. Checking whether a tree is balanced (Chapter 16, exercise 7, page 731)
Write a function

bool isBalanced(BSTNode *tree);

that determines whether a given tree is balanced according to the definition in the section
on “Balanced trees.” To solve this problem, all you really need to do is translate the
definition of a balanced tree more or less directly into code. If you do so, however, the
resulting implementation will be quite inefficient because it has to make several passes
over the tree. The real challenge in this problem is to implement the isBalanced
function so that it determines the result without looking at any node more than once.

 – 2 –

Problem 4. Designing an interface for class hierarchies
One of the fundamental features of object-oriented languages is that classes form
hierarchies through the inheritance chain. In C++, classes can inherit behavior from more
than one class, so the notion of a superclass is a bit harder to pin down than it is in Java,
where each class has exactly one superclass. In practice, however, most classes in C++
use a single inheritance chain, which means that the class hierarchy is structured in the
form of a tree.

Consider, for example, the following diagram

In this diagram, HourlyEmployee, CommissionedEmployee, and SalariedEmployee are
each subclasses of the more general Employee class.

Your job in this problem is to design and implement a class that can store the hierarchical
relationships shown in these class diagrams. As the sample diagram indicates, each class
has a name and a superclass, which will be NULL for the root of the tree. To illustrate the
idea of inheritance, it is useful to include with each class a list of the methods that it
exports directly. Given an object of that class, you could call any of these methods and
any of the methods defined by a superclass above it in the hierarchy.

Figure 1 shows a piece of the class hierarchy for the GObject class hierarchy in the
acm.graphics Java package. Inside the box for each class is a list of the common public
methods it implements. Thus, given an object of type G3DRect, you can call setRaised
because that is defined in the G3DRect class itself, setFilled because that is defined in
the GRect class, and setColor because that is defined all the way back at the GObject
level.

Task 4a: Design the interface for representing class hierarchies
Your first task in solving this problem is to define a structure that is capable of
representing the classes and methods in a tree-structured class hierarchy. To do so, you
need to write an interface class.h that exports a class named Class, which could
represent any of the boxes in Figure 1. What methods does Class need to export? What
does its constructor look like? What private instance variables will it need?

Task 4b: Implement the class you defined in the previous task
To complete the class definition, you need to write a file called class.cpp that supplies
the implementation for Class.

eeyolpmE

eeyolpmEdenoissimmoC eeyolpmEdeiralaSeeyolpmEylruoH

 – 3 –

Figure 1. Class diagram for a subset of the ACM graphics library

Task 4c: Write a function that displays all the methods available to a class
Now that you have a definition for Class, you can use it to generate some useful
information. Working as a client of the class.h interface, write a function

void listAllMethods(Class *c);

that takes a pointer to a Class object and displays a list of all the methods you could
apply to an object of that class along with the name of the class in which that method is
defined. For example, if classG3Rect has been initialized to correspond to the G3Rect
class shown in Figure 1, calling listAllMethods(classG3Rect) should produce the
following output:

 – 4 –

