Graph Algorithms

Outline

1. A review of the `graphtypes.h` and `graph.h` interfaces
2. A tour of the Pathfinder assignment
3. Examples of depth-first and breadth-first search
4. Dijkstra’s shortest-path algorithm
5. Kruskal’s minimum-spanning-tree algorithm

The Node and Arc Structures

```cpp
struct Node { /* Forward references to these two types so */
    struct Arc; /* that the C++ compiler can recognize them */

    string name;
    Set<Arc *> arcs; /* This type represents an individual node and consists of the */
    /* name of the node and the set of arcs from this node. */
};

struct Arc { /* Type: Arc */
    Node *start; /* This type represents an individual arc and consists of pointers */
    /* to the endpoints, along with the cost of traversing the arc. */
    Node *finish;
    double cost; }
};
```

Entries in the `graph.h` Interface

```cpp
template <typename NodeType, typename ArcType>
class Graph {
public:
    Graph();
    ~Graph();
    void clear();
    NodeType *addNode(string name);
    NodeType *addNode(NodeType *node);
    ArcType *addArc(string s1, string s2);
    ArcType *addArc(NodeType *n1, NodeType *n2);
    ArcType *addArc(ArcType *arc);
    bool isConnected(NodeType *n1, NodeType *n2);
    bool isConnected(string s1, string s2);
    NodeType *getNode(string name);
    Set<NodeType *> &getNodeSet();
    Set<ArcType *> &getArcSet();
    Set<ArcType *> &getArcSet(NodeType *node); }
```

Modules in the Pathfinder Assignment

```
graphtypes.h
path.h
path.cpp
```

Frodo’s Journey

```
journeys-of-frodo
```

Frodo's Journey
The Middle Earth Graph

Exercise: Depth-First Search
Construct a depth-first search starting from Hobbiton (HOB):

Exercise: Breadth-First Search
Construct a breadth-first search starting from Isengard (ISE):

Dijkstra’s Algorithm

- One of the most useful algorithms for computing the shortest paths in a graph was developed by Edsger W. Dijkstra in 1959.
- The strategy is similar to the breadth-first search algorithm you used to implement the word-ladder program in Assignment #2. The major difference are:
 - The queue used to hold the paths delivers items in increasing order of total cost rather than in the traditional first-in/first-out order. Such queues are called priority queues.
 - The algorithm keeps track of all nodes to which the total distance has already been fixed. Distances are fixed whenever you dequeue a path from the priority queue.

Exercise: Dijkstra’s Algorithm
Find the shortest path from Hobbiton (HOB) to Lorien (LOR):
Kruskal’s Algorithm

- In many cases, finding the shortest path is not as important as minimizing the cost of a network as a whole. A set of arcs that connects every node in a graph at the smallest possible cost is called a minimum spanning tree.
- The following algorithm for finding a minimum spanning tree was developed by Joseph Kruskal in 1956:
 - Start with a new empty graph with the same nodes as the original one but an empty set of arcs.
 - Sort all the arcs in the graph in order of increasing cost.
 - Go through the arcs in order and add each one to the new graph if the endpoints of that arc are not already connected by a path.
- This process can be made more efficient by maintaining sets of nodes in the new graph, as described on the next slide.

Combining Sets in Kruskal’s Algorithm

- Implementing the Pathfinder version of Kruskal’s algorithm requires you need to build a new graph containing the spanning tree. As you do, you will generate sets of disconnected graphs.
- When you choose a new arc, there are four possibilities for the sets formed by the nodes at the endpoints:
 1. *Neither node is yet in a set*. In this case, create a new set and add both nodes to it.
 2. *One node is in a set and the other isn’t*. In this case, add the new node to the same set.
 3. *The endpoints are in different existing sets*. In this case, you need to merge the two sets to create a new one containing the union of the existing ones.
 4. *The endpoints are in the same set*. In this case, there is already a path between these two nodes, so you don’t need this arc.

Exercise: Minimum Spanning Tree

Apply Kruskal’s algorithm to find a minimum spanning tree:

An Application of Kruskal’s Algorithm

- Suppose that you have a graph that looks like this:

 What would happen if you applied Kruskal’s algorithm for finding a minimum spanning tree, assuming that you choose the arcs in a random order?