Eric Roberts Handout #45
CS 106B February 27,2013

Graph Algorithms

QOutline

Graph Al gorithms . Areview the graphtypes.h and graph. h interfaces
. A tour of the Pathfinder assignment
. Examples of depth-first and breadth-first search

. Dijkstra’s shortest-path algorithm

L S S A

. Kruskal’s minimum-spanning-tree algorithm

Eric Roberts
CS 106B
February 27, 2013

The Node and Arc Structures Entries in the graph . h Interface

struct Node; /* Forward references to these two types so */ template 'ype, yP
struct Arc; /* that the C++ compiler can recognize them. */ class Graph {
public:
*
* Type: Node Graph() ;
,,,,,,,,,,, ~Graph() ;

* This type represents an individual node and consists of the id el ;
* name of the node and the set of arcs from this node. void elear();
* NodeType *addNode (string name) ;
NodeType *addNode (NodeType *node) ;
struct Node {

string name; ArcType *addArc(string sl, string s2);

Set<Arc *> arcs; ArcType *addArc (NodeType *nl, NodeType *n2);
}: ArcType *addArc(ArcType *arc);
/* bool isC (ype *nl, *n2) ;
* Type: Arc bool isConnected(string sl, string s2);
*ommmmmmee NodeType *getNode (string name) ;
* This type represents an individual arc and consists of pointers
* to the endpoints, along with the cost of traversing the arc. Set<NodeType *> & getNodeSet() ;
* Set<ArcType *> & getArcSet();

ype *> & ¢ 'ype *node) ;

struct Arc {
Node *start; Yi
Node *finish;
double cost;
}i

Modules in the Pathfinder Assignment Frodo’s Journey

Pathfinder.cpp

graphtypes.h

gpathfinder.h
gpathfinder.cpp

pqueue.h

The Middle Earth Graph

10 Bree 30

Southfarthing

Exercise: Depth-First Search

Construct a depth-first search starting from Hobbiton (HOB):

Exercise: Breadth-First Search

Construct a breadth-first search starting from Isengard (ISE):

Dijkstra’s Algorithm

¢ One of the most useful algorithms for computing the shortest
paths in a graph was developed by Edsgar W. Dijkstra in 1959.

The strategy is similar to the breadth-first search algorithm you
used to implement the word-ladder program in Assignment #2.
The major difference are:

— The queue used to hold the paths delivers items in increasing
order of total cost rather than in the traditional first-in/first-out
order. Such queues are called priority queues.

— The algorithm keeps track of all nodes to which the total distance
has already been fixed. Distances are fixed whenever you
dequeue a path from the priority queue.

Shortest Path

Hobiiton @10 P3° 0

Southfarthing

Exercise: Dijkstra’s Algorithm

Find the shortest path from Hobbiton (HOB) to Lorien (LOR):

10 BRE 30

Kruskal’s Algorithm

* In many cases, finding the shortest path is not as important as
as minimizing the cost of a network as a whole. A set of arcs
that connects every node in a graph at the smallest possible
cost is called a minimum spanning tree.

« The following algorithm for finding a minimum spanning tree
was developed by Joseph Kruskal in 1956:

— Start with a new empty graph with the same nodes as the original
one but an empty set of arcs.

— Sort all the arcs in the graph in order of increasing cost.

— Go through the arcs in order and add each one to the new graph if
the endpoints of that arc are not already connected by a path.

« This process can be made more efficient by maintaining sets of
nodes in the new graph, as described on the next slide.

Combining Sets in Kruskal’s Algorithm

« Implementing the Pathfinder version of Kruskal’s algorithm
requires you need to build a new graph containing the spanning
tree. As you do, you will generate sets of disconnected graphs.

* When you choose a new arc, there are four possibilities for the
sets formed by the nodes at the endpoints:

1. Neither node is yet in a set. In this case, create a new set and add
both nodes to it.

2. One node is in a set and the other isnt. In this case, add the new
node to the same set.

3. The endpoints are in different existing sets. In this case, you need
to merge the two sets to create a new one containing the union of
the existing ones.

4. The endpoints are in the same set. In this case, there is already a
path between these two nodes, so you don’t need this arc.

Exercise: Minimum Spanning Tree

Apply Kruskal’s algorithm to find a minimum spanning tree:

An Application of Kruskal’s Algorithm

« Suppose that you have a graph that looks like this:

* What would happen if you applied Kruskal’s algorithm for
finding a minimum spanning tree, assuming that you choose
the arcs in a random order?

