
Eric Roberts Handout #45
CS 106B February 27, 2013

Graph Algorithms

Graph Algorithms

Eric Roberts
CS 106B

February 27, 2013

Outline

A review the graphtypes.h and graph.h interfaces 1.

Examples of depth-first and breadth-first search 3.
Dijkstra�’s shortest-path algorithm 4.
Kruskal�’s minimum-spanning-tree algorithm 5.

A tour of the Pathfinder assignment 2.

struct Node; /* Forward references to these two types so */
struct Arc; /* that the C++ compiler can recognize them. */

/*
 * Type: Node
 * -----------
 * This type represents an individual node and consists of the
 * name of the node and the set of arcs from this node.
 */

struct Node {
 string name;
 Set<Arc *> arcs;
};

/*
 * Type: Arc
 * ----------
 * This type represents an individual arc and consists of pointers
 * to the endpoints, along with the cost of traversing the arc.
 */

struct Arc {
 Node *start;
 Node *finish;
 double cost;
};

The Node and Arc Structures
template <typename NodeType,typename ArcType>
class Graph {
public:

 Graph();
 ~Graph();

 void clear();

 NodeType *addNode(string name);
 NodeType *addNode(NodeType *node);

 ArcType *addArc(string s1, string s2);
 ArcType *addArc(NodeType *n1, NodeType *n2);
 ArcType *addArc(ArcType *arc);

 bool isConnected(NodeType *n1, NodeType *n2);
 bool isConnected(string s1, string s2);

 NodeType *getNode(string name);

 Set<NodeType *> & getNodeSet();
 Set<ArcType *> & getArcSet();
 Set<ArcType *> & getArcSet(NodeType *node);

};

Entries in the graph.h Interface

Modules in the Pathfinder Assignment
Pathfinder.cpp

gpathfinder.h
gpathfinder.cpp

pqueue.h

gtypes.h

graphtypes.h path.h
path.cpp

Frodo�’s Journey

– 2 –

The Middle Earth Graph

40

10

1

30

30
30

30

50
10

10

10

50

40

5

15 15

70

20

20

Hobbiton
Bree

Rivendell

Southfarthing
Caradhras

Moria

Lorien

Isengard

Edoras
Rauros BlackGate

MountDoom

CirithUngol

MinasTirith

Exercise: Depth-First Search

HOB
BRE

RIV

SOU CAR

MOR

LOR

ISE

EDO
RAU BLA

MOU

CIR
MIN

Construct a depth-first search starting from Hobbiton (HOB):

Exercise: Breadth-First Search

HOB
BRE

RIV

SOU CAR

MOR

LOR

ISE

EDO
RAU BLA

MOU

CIR
MIN

Construct a breadth-first search starting from Isengard (ISE):

Dijkstra�’s Algorithm
�• One of the most useful algorithms for computing the shortest

paths in a graph was developed by Edsgar W. Dijkstra in 1959.
�• The strategy is similar to the breadth-first search algorithm you

used to implement the word-ladder program in Assignment #2.
The major difference are:
�– The queue used to hold the paths delivers items in increasing

order of total cost rather than in the traditional first-in/first-out
order. Such queues are called priority queues.

�– The algorithm keeps track of all nodes to which the total distance
has already been fixed. Distances are fixed whenever you
dequeue a path from the priority queue.

Shortest Path

40

10

1

30

30
30

30

50

10

10

10

50

40

5

15 15

70

20

20

Hobbiton
Bree

Rivendell

Southfarthing
Caradhras

Moria

Lorien

Isengard

Edoras
Rauros BlackGate

MountDoom

CirithUngol

MinasTirith

HOB
BRE

RIV

SOU CAR

MOR

LOR

ISE

EDO
RAU BLA

MOU

CIR
MIN

10

1

30

30
30

30

50

10

10

10

50
40

5

15 15

70 20

20

40

Exercise: Dijkstra�’s Algorithm
Find the shortest path from Hobbiton (HOB) to Lorien (LOR):

– 3 –

Kruskal�’s Algorithm
�• In many cases, finding the shortest path is not as important as

as minimizing the cost of a network as a whole. A set of arcs
that connects every node in a graph at the smallest possible
cost is called a minimum spanning tree.

�• The following algorithm for finding a minimum spanning tree
was developed by Joseph Kruskal in 1956:
�– Start with a new empty graph with the same nodes as the original

one but an empty set of arcs.

�– Sort all the arcs in the graph in order of increasing cost.
�– Go through the arcs in order and add each one to the new graph if

the endpoints of that arc are not already connected by a path.

�• This process can be made more efficient by maintaining sets of
nodes in the new graph, as described on the next slide.

Combining Sets in Kruskal�’s Algorithm
�• Implementing the Pathfinder version of Kruskal�’s algorithm

requires you need to build a new graph containing the spanning
tree. As you do, you will generate sets of disconnected graphs.

�• When you choose a new arc, there are four possibilities for the
sets formed by the nodes at the endpoints:

Neither node is yet in a set. In this case, create a new set and add
both nodes to it.

1.

One node is in a set and the other isn�’t. In this case, add the new
node to the same set.

2.

The endpoints are in different existing sets. In this case, you need
to merge the two sets to create a new one containing the union of
the existing ones.

3.

The endpoints are in the same set. In this case, there is already a
path between these two nodes, so you don�’t need this arc.

4.

Exercise: Minimum Spanning Tree
Apply Kruskal�’s algorithm to find a minimum spanning tree:

10

1

30

30
30

30

50

10

10

10

50
40

5

15 15

70 20

20

40

HOB
BRE

RIV

SOU CAR

MOR

LOR

ISE

EDO
RAU BLA

MOU

CIR
MIN

An Application of Kruskal�’s Algorithm

�• What would happen if you applied Kruskal�’s algorithm for
finding a minimum spanning tree, assuming that you choose
the arcs in a random order?

�• Suppose that you have a graph that looks like this:

