
Eric Roberts Handout #46
CS 106B March 1, 2013

Inheritance in C++

Inheritance in C++

Eric Roberts
CS 106B

March 1, 2013

Class Hierarchies
�• Much of the power of modern object-oriented languages

comes from the fact that they support class hierarchies. Any
class can be designated as a subclass of some other class,
which is called its superclass.

�• Each subclass represents a specialization of its superclass. If
you create an object that is an instance of a class, that object
is also an instance of all other classes in the hierarchy above it
in the superclass chain.

�• When you define a new class in C++, that class automatically
inherits the behavior of its superclass.

�• Although C++ supports multiple inheritance in which a class
can inherit behavior from more than one superclass, the vast
majority of class hierarchies use single inheritance in which
each class has a unique superclass. This convention means
that class hierarchies tend to form trees rather than graphs.

Simplified View of the Stream Hierarchy
ios

clear()
fail()
eof()

ostream

put()
<<

istringstream

istringstream(s)

ofstream

open(cstr)
close()

ostringstream

str()

istream

get()
unget()
>>

ifstream

open(cstr)
close()

Representing Inheritance in C++

class subclass : public superclass {
 body of class definition
};

�• The first step in creating a C++ subclass is to indicate the
superclass on the header line, using the following syntax:

�• You can use this feature to specify the types for a collection
class, as in the following definition of StringMap:

class StringMap : public Map<string,string> {
 /* Empty */
};

�• This strategy is useful in Pathfinder, because it lets you define
a PathfinderGraph class with specific node and arc types:

class PathfinderGraph : public Graph<Node,Arc> {
 additional operations you want for your graph
};

Differences between Java and C++
�• In Java, defining a subclass method automatically overrides

the definition of that method in its superclass. In C++, you
have to explicitly allow for overriding by marking the method
prototype with the keyword virtual.

�• In Java, all objects are allocated dynamically on the heap. In
C++, objects live either on the heap or on the stack. Heap
objects are created using the keyword new and are referred to
by their address. Stack objects take a fixed amount of space
determined by the number and size of the instance variables.

�• In Java, it is always legal to assign an object of a subclass to a
variable declared to be its superclass. While that operation is
technically legal in C++, it rarely does what you want, because
C++ throws away any fields in the assigned object that don�’t
fit into the superclass. This behavior is called slicing. By
contrast, it is always legal to assign pointers to objects.

The Employee Hierarchy
Employee

getName()
virtual getPay()

SalariedEmployee

setSalary(salary)
virtual getPay()

CommissionedEmployee

setBaseSalary(dollars)
setCommissionRate(rate)
setSalesVolume(dollars)
virtual getPay()

HourlyEmployee

setHourlyRate(wage)
setHoursWorked(hours)
virtual getPay()

In the Employee hierarchy, getPay is implemented differently
in each subclass and must therefore be a virtual method.

– 2 –

Abstract Classes
�• An abstract class is a class that is never created on its own but

instead serves as a common superclass for concrete classes
that correspond to actual objects.

�• In C++, any method that is always implemented by a concrete
subclass is indicated by including = 0 before the semicolon on
the prototype line, as follows:

class Employee {
 virtual double getPay() = 0;
};

class HourlyEmployee : public Employee {
 virtual double getPay();
};

class CommissionedEmployee : public Employee {
 virtual double getPay();
};

class SalariedEmployee : public Employee {
 virtual double getPay();
};

The Darwin Simulation Game

Years ago, one of the 106B
assignments was the Darwin
game, which was played on a
grid populated by �“creatures�”
trying to �“infect�” other types.

The standard creatures were:

Rover, which tries to move
forward, turning if blocked.
Flytrap, which simply spins
to the left.
Food, which does nothing
except wait to be eaten.

Specifying Creature Behavior
�• The creatures in the Darwin game have different behaviors,

which are specified by defining a method called step. The
definition of the step method is different for each subclass:

void Flytrap::step() {
 if (facingEnemy()) {
 infect();
 } else {
 turnLeft();
 }
}

void Rover::step() {
 if (facingEnemy()) {
 infect();
 } else if (isBlocked()) {
 if (random()) {
 turnLeft();
 } else {
 turnRight();
 }
 } else {
 move();
 }
}

void Food::step() {
 /* Empty */
}

�• Because the definition of step is different in each subclass,
this method must be virtual.

The Creature Hierarchy

Rover

Rover()
virtual step()

Creature

setImage(name)
move()
turnLeft()
turnRight()
infect()
facingWall()
facingEnemy()
facingSame()
isBlocked()
virtual step()

Flytrap

Flytrap()
virtual step()

Food

Food()
virtual step()

Representing Graphical Shapes
�• In CS 106A, you learned how to use the GObject hierarchy in

the acm.graphics package, which looks something like this:
GObject

�• The gobjects.h interface includes all these classes. Chapter
19, however, implements just a few of them.

GLine GRect GOval

GRoundRect G3DRect

GLabel GImage GArc GPolygon

�• In C++, the most important thing to keep in mind is that you
have to use pointers to these objects.

Exercise: Do Not Enter
�• The British version of a �“Do Not Enter�” sign looks like this:

�• Write a program that uses the stripped-down version of the
gobjects.h that displays this symbol at the center of the
window. The sizes of the components are given as constants
in the starter file.

– 3 –

The GObject Hierarchy

GObject

setLocation(x, y)
move(dx, dy)
setColor(color)
virtual draw(gw)

GLine

GLine(x1, y1, x2, y2)
virtual draw(gw)

GOval

GOval(x, y, width, height)
setFilled(flag)
virtual draw(gw)

GRect

GRect(x, y, width, height)
setFilled(flag)
virtual draw(gw)

/*
 * File: gobjects.h
 * ----------------
 * This file defines a simple hierarchy of graphical objects.
 */

#ifndef _gobjects_h
#define _gobjects_h

#include <string>
#include "gwindow.h"

/*
 * Class: GObject
 * --------------
 * This class is the root of the hierarchy and encompasses all objects
 * that can be displayed in a window. Clients will use pointers to
 * a GObject rather than the GObject itself.
 */

class GObject {

public:

The gobjects.h Interface

/*
 * Method: setLocation
 * Usage: gobj->setLocation(x, y);
 * -------------------------------
 * Sets the x and y coordinates of gobj to the specified values.
 */

 void setLocation(double x, double y);

/*
 * Method: move
 * Usage: gobj->move(dx, dy);
 * --------------------------
 * Adds dx and dy to the coordinates of gobj.
 */

 void move(double x, double y);

/*
 * Method: setColor
 * Usage: gobj->setColor(color);
 * -----------------------------
 * Sets the color of gobj.
 */

 void setColor(std::string color);

The gobjects.h Interface
/*
 * Abstract method: draw
 * Usage: gobj->draw(gw);
 * ----------------------
 * Draws the graphical object on the GraphicsWindow specified by gw.
 * This method is implemented by the specific GObject subclasses.
 */

 virtual void draw(GWindow & gw) = 0;

protected:

/* The following methods and fields are available to the subclasses */

 GObject(); /* Superclass constructor */
 std::string color; /* The color of the object */
 double x, y; /* The coordinates of the object */

};

The gobjects.h Interface

/*
 * Subclass: GLine
 * ---------------
 * The GLine subclass represents a line segment on the window.
 */

class GLine : public GObject {

public:

/*
 * Constructor: GLine
 * Usage: GLine *lp = new GLine(x1, y1, x2, y2);
 * ---
 * Creates a line segment that extends from (x1, y1) to (x2, y2).
 */

 GLine(double x1, double y1, double x2, double y2);

/* Prototypes for the overridden virtual methods */

 virtual void draw(GWindow & gw);

private:
 double dx; /* Horizontal distance from x1 to x2 */
 double dy; /* Vertical distance from y1 to y2 */

};

The gobjects.h Interface
class GRect : public GObject {

public:

/*
 * Constructor: GRect
 * Usage: GRect *rp = new GRect(x, y, width, height);
 * --
 * Creates a rectangle of the specified size and upper left corner at (x, y).
 */

 GRect(double x, double y, double width, double height);

/*
 * Method: setFilled
 * Usage: rp->setFilled(flag);
 * ---------------------------
 * Indicates whether the rectangle is filled.
 */

 void setFilled(bool flag);

 virtual void draw(GWindow & gw);

private:
 double width, height; /* Dimensions of the rectangle */
 bool filled; /* True if the rectangle is filled */

};

The gobjects.h Interface

– 4 –

class GOval : public GObject {

public:

/*
 * Constructor: GOval
 * Usage: GOval *op = new GOval(x, y, width, height);
 * --
 * Creates an oval inscribed in the specified rectangle.
 */

 GOval(double x, double y, double width, double height);

/*
 * Method: setFilled
 * Usage: op->setFilled(flag);
 * ---------------------------
 * Indicates whether the oval is filled.
 */

 void setFilled(bool flag);

 virtual void draw(GWindow & gw);

private:
 double width, height; /* Dimensions of the bounding rectangle */
 bool filled; /* True if the oval is filled */

};

The gobjects.h Interface
/*
 * Implementation notes: GObject class
 * -----------------------------------
 * The constructor for the superclass sets all graphical objects to BLACK,
 * which is the default color.
 */

GObject::GObject() {
 setColor("BLACK");
}

void GObject::setLocation(double x, double y) {
 this->x = x;
 this->y = y;
}

void GObject::move(double dx, double dy) {
 x += dx;
 y += dy;
}

void GObject::setColor(string color) {
 this->color = color;
}

Implementation of the GObject Class

/*
 * Implementation notes: GLine class
 * ---------------------------------
 * The constructor for the GLine class has to change the specification
 * of the line from the endpoints passed to the constructor to the
 * representation that uses a starting point along with dx/dy values.
 */

GLine::GLine(double x1, double y1, double x2, double y2) {
 this->x = x1;
 this->y = y1;
 this->dx = x2 - x1;
 this->dy = y2 - y1;
}

void GLine::draw(GWindow & gw) {
 gw.setColor(color);
 gw.drawLine(x, y, x + dx, y + dy);
}

Implementation of the GLine Class
GRect::GRect(double x, double y, double width, double height) {
 this->x = x;
 this->y = y;
 this->width = width;
 this->height = height;
 filled = false;
}

void GRect::setFilled(bool flag) {
 filled = flag;
}

void GRect::draw(GWindow & gw) {
 gw.setColor(color);
 if (filled) {
 gw.fillRect(x, y, width, height);
 } else {
 gw.drawRect(x, y, width, height);
 }
}

Implementation of the GRect Class

GOval::GOval(double x, double y, double width, double height) {
 this->x = x;
 this->y = y;
 this->width = width;
 this->height = height;
 filled = false;
}

void GOval::setFilled(bool flag) {
 filled = flag;
}

void GOval::draw(GWindow & gw) {
 gw.setColor(color);
 if (filled) {
 gw.fillOval(x, y, width, height);
 } else {
 gw.drawOval(x, y, width, height);
 }
}

Implementation of the GOval Class Calling Superclass Constructors
�• When you call the constructor for an object, the constructor

ordinarily calls the default constructor for the superclass,
which is the one that takes no arguments.

�• You can call a different version of the superclass constructor
by adding an initializer list to the constructor header. This list
consists of a colon followed either by a call to the superclass
constructor or initializers for its variables.

�• As an example, the following definition creates a GSquare
subclass whose constructor takes the coordinates of the upper
left corner and the size of the square:

class GSquare : public GRect {
 GSquare(double x, double y, double size)
 : GRect(x, y, size, size) {
 /* Empty */
 }
};

