
Eric Roberts Handout #51
CS 106B March 6, 2013

Parsing Strategies

Parsing Strategies

Eric Roberts
CS 106B

March 6, 2013

The Problem of Parsing
�• The rules for forming an expression can be expressed in the

form of a grammar, as follows:

E constant
E identifier
E E op E
E (E)

�• The process of translating an expression from a string to its
internal form is called parsing.

A Two-Level Grammar
�• The problem of parsing an expression can be simplified by

changing the grammar to one that has two levels:
�– An expression is either a term or two expressions joined by an

operator.
�– A term is either a constant, an identifier, or an expression

enclosed in parentheses.

�• This design is reflected in the following revised grammar.

T constant
T identifier

E E op E

T (E)

E T

Ambiguity in Parse Structures
�• Although the two-level grammar from the preceding slide can

recognize any expression, it is ambiguous because the same
input string can generate more than one parse tree.

x + 2 * y

T T T

E

E

x + 2 * y

T T T

E

E

�• Ambiguity in grammars is typically resolved by providing the
parser with information about the precedence of the operators.
The text describes two strategies: Iversonian precedence, in
which the operators all group to the right, and operator
precedence, in which each operator is associated with an
integer that defines its place in the precedence hierarchy.

Exercise: Parsing an Expression
�• Diagram the expression tree that results from the input string

2 * n + 1 odd =

/*
 * Implementation notes: readE
 * Usage: exp = readE(scanner, prec);
 * ----------------------------------
 * This function reads the next expression from the scanner by
 * matching the input to the following ambiguous grammar:
 *
 * E -> T
 * E -> E op E
 *
 * This version of the method uses precedence to resolve ambiguity.
 */

Expression *readE(TokenScanner & scanner, int prec) {
 Expression *exp = readT(scanner);
 string token;
 while (true) {
 token = scanner.nextToken();
 int tprec = precedence(token);
 if (tprec <= prec) break;
 Expression *rhs = readE(scanner, tprec);
 exp = new CompoundExp(token, exp, rhs);
 }
 scanner.saveToken(token);
 return exp;
}

The parser.cpp Implementation

– 2 –

/*
 * Function: readT
 * Usage: exp = readT(scanner);
 * ----------------------------
 * This function reads a single term from the scanner.
 */

Expression *readT(TokenScanner & scanner) {
 string token = scanner.nextToken();
 TokenType type = scanner.getTokenType(token);
 if (type == WORD) return new IdentifierExp(token);
 if (type == NUMBER) return new ConstantExp(stringToInteger(token));
 if (token != "(") error("Illegal term in expression");
 Expression *exp = readE(scanner, 0);
 if (scanner.nextToken() != ")") {
 error("Unbalanced parentheses in expression");
 }
 return exp;
}

The parser.cpp Implementation
/*
 * Function: precedence
 * Usage: prec = precedence(token);
 * --------------------------------
 * This function returns the precedence of the specified operator
 * token. If the token is not an operator, precedence returns 0.
 */

int precedence(string token) {
 if (token == "=") return 1;
 if (token == "+" || token == "-") return 2;
 if (token == "*" || token == "/") return 3;
 return 0;
}

The parser.cpp Implementation

Exercise: Coding a BASIC Program
�• On the second practice midterm, one of the problems

concerned the hailstone sequence. For any positive integer n,
you compute the terms in the hailstone sequence by repeatedly
executing the following steps:
�– If n is equal to 1, you�’ve reached the end of the sequence and can stop.
�– If n is even, divide it by two.
�– If n is odd, multiply it by three and add one.

�• Write a BASIC program that reads in an integer and prints out
its hailstone sequence.

The Basic Starter Project

Modules in the Starter Folder
Basic.cpp You write this one, but it�’s short.

exp.h
exp.cpp

You need to remove the = operator and add
a few things to EvaluationContext.

parser.h
parser.cpp

You need to remove the = operator.

program.h
program.cpp

You�’re given the interface, but need to write
the private section and the implementation.

statement.h
statement.cpp

You�’re given the interface and need to
supply the implementation.

Your Primary Tasks

tmtSmeR tmtSotoGtmtSteL tmtStnirP tmtStupnI tmtSdnEtmtSfI

tnemetatS

Figure out how the pieces of the program go together and
what you need to do.

1.

Code the Program class, keeping in mind what methods need
to run in constant time.

2.

Implement the Statement class hierarchy: 3.

