Algorithmic Analysis and Sorting
Part Three
Friday Four Square!

4:15PM at Gates Computer Science
Midterm Logistics

- Midterm is next **Tuesday, May 7 from 7PM - 10PM**.
- We are in five different rooms, organized by last name:
 - A – G: Go to **Nvidia Auditorium** (right here!)
 - H – L: Go to **Skilling Auditorium**
 - M – U: Go to **Gates B01** or **Gates B03**
 - V – W: Go to **Huang 018** (next door!)
 - X – Z: Go to **Hewlett 101**
- Review session **Sunday 7PM-9PM** in **320-105**.
- Exam is open-book, open-note, but closed-computer.
- Covers material up through and including Wednesday's lecture.
Announcements

- Assignment 3 due right now.
- Assignment 4 (**Boggle**) out, due Monday, May 13 at 2:15PM.
 - Play around with exhaustive recursion and recursive backtracking!
 - Write a computer program that can beat you at your own game. 😊
Previously on CS106B...
Big-O Notation

- Notation for summarizing the long-term growth rate of some function.
- Useful for analyzing runtime:
 - $O(n)$: The runtime grows linearly.
 - $O(n^2)$: The runtime grows quadratically.
 - $O(2^n)$: The runtime grows exponentially.
High-Level Idea

• A recursive sorting algorithm!

• **Base Case:**
 • An empty or single-element list is already sorted.

• **Recursive step:**
 • Break the list in half and recursively sort each part.
 • Use `merge` to combine them back into a single sorted list.

• This algorithm is called `mergesort`.

●
A Graphical Intuition

\[O(n) \]

\[O(n) \]

\[O(n) \]

\[O(n) \]

\[O(n log n) \]
Mergesort Times

<table>
<thead>
<tr>
<th>Size</th>
<th>Selection Sort</th>
<th>Insertion Sort</th>
<th>“Split Sort”</th>
<th>Mergesort</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>0.304</td>
<td>0.160</td>
<td>0.161</td>
<td>0.006</td>
</tr>
<tr>
<td>20000</td>
<td>1.218</td>
<td>0.630</td>
<td>0.387</td>
<td>0.010</td>
</tr>
<tr>
<td>30000</td>
<td>2.790</td>
<td>1.427</td>
<td>0.726</td>
<td>0.017</td>
</tr>
<tr>
<td>40000</td>
<td>4.646</td>
<td>2.520</td>
<td>1.285</td>
<td>0.021</td>
</tr>
<tr>
<td>50000</td>
<td>7.395</td>
<td>4.181</td>
<td>2.719</td>
<td>0.028</td>
</tr>
<tr>
<td>60000</td>
<td>10.584</td>
<td>5.635</td>
<td>2.897</td>
<td>0.035</td>
</tr>
<tr>
<td>70000</td>
<td>14.149</td>
<td>8.143</td>
<td>3.939</td>
<td>0.041</td>
</tr>
<tr>
<td>80000</td>
<td>18.674</td>
<td>10.333</td>
<td>5.079</td>
<td>0.042</td>
</tr>
<tr>
<td>90000</td>
<td>23.165</td>
<td>12.832</td>
<td>6.375</td>
<td>0.048</td>
</tr>
</tbody>
</table>
Can we do Better?

• Mergesort is $O(n \log n)$.
• This is asymptotically better than $O(n^2)$.
• Can we do better?
 • In general, no: comparison-based sorts cannot have a worst-case runtime better than $O(n \log n)$.

• In the worst case, we can only get faster by a constant factor!
And now... new stuff!
A Trivial Observation
So What?

- This idea leads to a particularly clever sorting algorithm.

- Idea:
 - Pick an element from the array.
 - Put the smaller elements on one side.
 - Put the bigger elements on the other side.
 - Recursively sort each half.

- But how do we do the middle two steps?
Partitioning

- Pick a **pivot element**.
- Move everything less than the pivot to the left of the pivot.
- Move everything greater than the pivot to the right of the pivot.
- Good news: $O(n)$ algorithm exists!
- Bad news: it's a bit tricky...
The Partition Algorithm
The Partition Algorithm

6 3 8 2 9 1 4 5 7 10
The Partition Algorithm
The Partition Algorithm
The Partition Algorithm
The Partition Algorithm

6 3 8 2 9 1 4 5 7 10

Diagram of the partition algorithm with numbers sorted into groups.
The Partition Algorithm
Code for Partition
Code for Partition

```c++
int partition(Vector<int>& v, int low, int high) {
  int pivot = v[low];
  int left = low + 1, right = high;

  while (left < right) {
    while (left < right && v[right] >= pivot) --right;
    while (left < right && v[left] < pivot) ++left;
    if (left < right) swap(v[left], v[right]);
  }

  if (pivot < v[right]) return low;
  swap(v[low], v[right]);
  return right;
}
```
A Partition-Based Sort

- Idea:
 - Partition the array around some element.
 - Recursively sort the left and right halves.
- This works extremely quickly.
- In fact... the algorithm is called quicksort.
Quicksort
void quicksort(Vector<int> &v, int low, int high) {
 if (low >= high) return;

 int partitionPoint = partition(v, low, high);
 quicksort(v, low, partitionPoint - 1);
 quicksort(v, partitionPoint + 1, high);
}

Quicksort
How fast is quicksort?
It depends on our choice of pivot.
Suppose we get lucky...

\[O(n \log n) \]
Suppose we get *sorta* lucky...

\[O(n \log n) \]
Suppose we get unlucky
Suppose we get unlucky.
Suppose we get unlucky
Suppose we get unlucky
Suppose we get unlucky...
Suppose we get unlucky

\[n \]

\[n - 1 \]

\[n - 2 \]

\[n - 3 \]

...
Suppose we get unlucky

\[n \]

\[n - 1 \]

\[n - 2 \]

\[n - 3 \]

\[\ldots \quad O(n^2) \]
Quicksort is Strange

- In most cases, quicksort has runtime $O(n \log n)$.
- In the worst case, quicksort has runtime $O(n^2)$.
- How can you avoid this?

- **Pick better pivots!**
 - Pick the median.
 - Can be done in $O(n)$, but *expensive* $O(n)$.
 - Pick the “median-of-three.”
 - Better than nothing, but still can hit worst case.
 - Pick randomly.
 - Extremely low probability of $O(n^2)$.
Quicksort is Fast

- Although quicksort is $O(n^2)$ in the worst case, it is one of the fastest known sorting algorithms.
- $O(n^2)$ behavior is extremely unlikely with random pivots; runtime is usually a very good $O(n \log n)$.
- It's hard to argue with the numbers...
Timing Quicksort

<table>
<thead>
<tr>
<th>Size</th>
<th>Selection Sort</th>
<th>Insertion Sort</th>
<th>“Split Sort”</th>
<th>Mergesort</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>0.304</td>
<td>0.160</td>
<td>0.161</td>
<td>0.006</td>
</tr>
<tr>
<td>20000</td>
<td>1.218</td>
<td>0.630</td>
<td>0.387</td>
<td>0.010</td>
</tr>
<tr>
<td>30000</td>
<td>2.790</td>
<td>1.427</td>
<td>0.726</td>
<td>0.017</td>
</tr>
<tr>
<td>40000</td>
<td>4.646</td>
<td>2.520</td>
<td>1.285</td>
<td>0.021</td>
</tr>
<tr>
<td>50000</td>
<td>7.395</td>
<td>4.181</td>
<td>2.719</td>
<td>0.028</td>
</tr>
<tr>
<td>60000</td>
<td>10.584</td>
<td>5.635</td>
<td>2.897</td>
<td>0.035</td>
</tr>
<tr>
<td>70000</td>
<td>14.149</td>
<td>8.143</td>
<td>3.939</td>
<td>0.041</td>
</tr>
<tr>
<td>80000</td>
<td>18.674</td>
<td>10.333</td>
<td>5.079</td>
<td>0.042</td>
</tr>
<tr>
<td>90000</td>
<td>23.165</td>
<td>12.832</td>
<td>6.375</td>
<td>0.048</td>
</tr>
</tbody>
</table>
Timing Quicksort

<table>
<thead>
<tr>
<th>Size</th>
<th>Selection Sort</th>
<th>Insertion Sort</th>
<th>“Split Sort”</th>
<th>Mergesort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>0.304</td>
<td>0.160</td>
<td>0.161</td>
<td>0.006</td>
<td>0.001</td>
</tr>
<tr>
<td>20000</td>
<td>1.218</td>
<td>0.630</td>
<td>0.387</td>
<td>0.010</td>
<td>0.002</td>
</tr>
<tr>
<td>30000</td>
<td>2.790</td>
<td>1.427</td>
<td>0.726</td>
<td>0.017</td>
<td>0.004</td>
</tr>
<tr>
<td>40000</td>
<td>4.646</td>
<td>2.520</td>
<td>1.285</td>
<td>0.021</td>
<td>0.005</td>
</tr>
<tr>
<td>50000</td>
<td>7.395</td>
<td>4.181</td>
<td>2.719</td>
<td>0.028</td>
<td>0.006</td>
</tr>
<tr>
<td>60000</td>
<td>10.584</td>
<td>5.635</td>
<td>2.897</td>
<td>0.035</td>
<td>0.008</td>
</tr>
<tr>
<td>70000</td>
<td>14.149</td>
<td>8.143</td>
<td>3.939</td>
<td>0.041</td>
<td>0.009</td>
</tr>
<tr>
<td>80000</td>
<td>18.674</td>
<td>10.333</td>
<td>5.079</td>
<td>0.042</td>
<td>0.009</td>
</tr>
<tr>
<td>90000</td>
<td>23.165</td>
<td>12.832</td>
<td>6.375</td>
<td>0.048</td>
<td>0.012</td>
</tr>
</tbody>
</table>
An Interesting Observation

- Big-O notation talks about long-term growth, but says nothing about small inputs.
- For small inputs, insertion sort can be better than mergesort or quicksort.

![Graph showing runtime vs input size for insertion sort and mergesort. Insertion Sort line is steeper than Mergesort line for small input sizes.]
Hybrid Sorting Algorithms

• Modify the mergesort algorithm to switch to insertion sort when the input gets sufficiently small.

• This is called a hybrid sorting algorithm.
void hybridMergesort(Vector<int>& v) {
 if (v.size() <= kCutoffSize) {
 insertionSort(v);
 } else {
 Vector<int> left, right;
 for (int i = 0; i < v.size() / 2; i++)
 left += v[i];
 for (int i = v.size() / 2; i < v.size(); i++)
 right += v[i];
 hybridMergesort(left);
 hybridMergesort(right);
 merge(left, right, v);
 }
}
void hybridMergesort(Vector<int>& v) {
 if (v.size() <= kCutoffSize) {
 insertionSort(v);
 } else {
 Vector<int> left, right;
 for (int i = 0; i < v.size() / 2; i++)
 left += v[i];
 for (int i = v.size() / 2; i < v.size(); i++)
 right += v[i];

 hybridMergesort(left);
 hybridMergesort(right);

 merge(left, right, v);
 }
}
Hybrid Sorting Algorithms
Runtime for Hybrid Mergesort

<table>
<thead>
<tr>
<th>Size</th>
<th>Mergesort</th>
<th>Hybrid Mergesort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000000</td>
<td>0.063</td>
<td>0.019</td>
<td>0.012</td>
</tr>
<tr>
<td>3000000</td>
<td>0.176</td>
<td>0.061</td>
<td>0.060</td>
</tr>
<tr>
<td>5000000</td>
<td>0.283</td>
<td>0.091</td>
<td>0.063</td>
</tr>
<tr>
<td>7000000</td>
<td>0.396</td>
<td>0.130</td>
<td>0.089</td>
</tr>
<tr>
<td>9000000</td>
<td>0.510</td>
<td>0.165</td>
<td>0.118</td>
</tr>
<tr>
<td>1100000</td>
<td>0.608</td>
<td>0.223</td>
<td>0.151</td>
</tr>
<tr>
<td>1300000</td>
<td>0.703</td>
<td>0.246</td>
<td>0.179</td>
</tr>
<tr>
<td>1500000</td>
<td>0.844</td>
<td>0.28</td>
<td>0.215</td>
</tr>
<tr>
<td>1700000</td>
<td>0.995</td>
<td>0.326</td>
<td>0.243</td>
</tr>
<tr>
<td>1900000</td>
<td>1.070</td>
<td>0.355</td>
<td>0.274</td>
</tr>
</tbody>
</table>
Hybrid Sorts in Practice

- Introspective Sort (*Introsort*)
 - Based on quicksort, insertion sort, and *heapsort*.
 - Heapsort is $O(n \log n)$ and a bit faster than mergesort.
 - Uses quicksort, then switches to heapsort if it looks like the algorithm is degenerating to $O(n^2)$.
 - Uses insertion sort for small inputs.
 - Gains the raw speed of quicksort without any of the drawbacks.
Runtime for Introsort

<table>
<thead>
<tr>
<th>Size</th>
<th>Mergesort</th>
<th>Hybrid Mergesort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>100000</td>
<td>0.063</td>
<td>0.019</td>
<td>0.012</td>
</tr>
<tr>
<td>300000</td>
<td>0.176</td>
<td>0.061</td>
<td>0.060</td>
</tr>
<tr>
<td>500000</td>
<td>0.283</td>
<td>0.091</td>
<td>0.063</td>
</tr>
<tr>
<td>700000</td>
<td>0.396</td>
<td>0.130</td>
<td>0.089</td>
</tr>
<tr>
<td>900000</td>
<td>0.510</td>
<td>0.165</td>
<td>0.118</td>
</tr>
<tr>
<td>1100000</td>
<td>0.608</td>
<td>0.223</td>
<td>0.151</td>
</tr>
<tr>
<td>1300000</td>
<td>0.703</td>
<td>0.246</td>
<td>0.179</td>
</tr>
<tr>
<td>1500000</td>
<td>0.844</td>
<td>0.28</td>
<td>0.215</td>
</tr>
<tr>
<td>1700000</td>
<td>0.995</td>
<td>0.326</td>
<td>0.243</td>
</tr>
<tr>
<td>1900000</td>
<td>1.070</td>
<td>0.355</td>
<td>0.274</td>
</tr>
</tbody>
</table>
Runtime for Introsort

<table>
<thead>
<tr>
<th>Size</th>
<th>Mergesort</th>
<th>Hybrid Mergesort</th>
<th>Quicksort</th>
<th>Introsort</th>
</tr>
</thead>
<tbody>
<tr>
<td>100000</td>
<td>0.063</td>
<td>0.019</td>
<td>0.012</td>
<td>0.009</td>
</tr>
<tr>
<td>300000</td>
<td>0.176</td>
<td>0.061</td>
<td>0.060</td>
<td>0.028</td>
</tr>
<tr>
<td>500000</td>
<td>0.283</td>
<td>0.091</td>
<td>0.063</td>
<td>0.043</td>
</tr>
<tr>
<td>700000</td>
<td>0.396</td>
<td>0.130</td>
<td>0.089</td>
<td>0.060</td>
</tr>
<tr>
<td>900000</td>
<td>0.510</td>
<td>0.165</td>
<td>0.118</td>
<td>0.078</td>
</tr>
<tr>
<td>1100000</td>
<td>0.608</td>
<td>0.223</td>
<td>0.151</td>
<td>0.092</td>
</tr>
<tr>
<td>1300000</td>
<td>0.703</td>
<td>0.246</td>
<td>0.179</td>
<td>0.107</td>
</tr>
<tr>
<td>1500000</td>
<td>0.844</td>
<td>0.28</td>
<td>0.215</td>
<td>0.123</td>
</tr>
<tr>
<td>1700000</td>
<td>0.995</td>
<td>0.326</td>
<td>0.243</td>
<td>0.139</td>
</tr>
<tr>
<td>1900000</td>
<td>1.070</td>
<td>0.355</td>
<td>0.274</td>
<td>0.158</td>
</tr>
</tbody>
</table>
We've spent all of our time talking about **fast** and **efficient** sorting algorithms.
However, we have neglected to find slow and inefficient sorting algorithms.
Sorting the Slow Way: An Analysis of Perversely Awful Randomized Sorting Algorithms

Hermann Gruber1 and Markus Holzer2 and Oliver Ruepp2

1 Institut für Informatik, Ludwig-Maximilians-Universität München, Oettingenstraße 67, D-80538 München, Germany
email: gruberh@tcs.ifi.lmu.de

2 Institut für Informatik, Technische Universität München, Boltzmannstraße 3, D-85748 Garching bei München, Germany
email: \{holzer,ruepp\}@in.tum.de
Introducing Bogosort
Next Time

• **Designing Abstractions**
 • How do you build new container classes?

• **Class Design**
 • What do classes look like in C++?