Linked Lists
Part Three

-and-

Hashing
Part One
Recap from Last Time
Implementing Queue

- Earlier, we implemented a queue using two stacks.
- The implementation supported enqueue and dequeue in average-case $O(1)$.
- We can also implement a queue using linked lists!
- Idea:
 - To **enqueue**, append a new cell to the end of the list.
 - To **dequeue**, remove the first cell from the list.
Implementing Queue

- Earlier, we implemented a queue using two stacks.
- The implementation supported enqueue and dequeue in average-case $O(1)$.
- We can also implement a queue using linked lists!

Idea:

- To **enqueue**, append a new cell to the end of the list.
- To **dequeue**, remove the first cell from the list.
Implementing Queue

• Earlier, we implemented a queue using two stacks.
• The implementation supported enqueue and dequeue in average-case $O(1)$.
• We can also implement a queue using linked lists!
• Idea:
 • To **enqueue**, append a new cell to the end of the list.
 • To **dequeue**, remove the first cell from the list.
Implementing Queue

- Earlier, we implemented a queue using two stacks.
- The implementation supported enqueue and dequeue in average-case O(1).
- We can also implement a queue using linked lists!
- Idea:
 - To enqueue, append a new cell to the end of the list.
 - To dequeue, remove the first cell from the list.
Implementing Queue

• Earlier, we implemented a queue using two stacks.
• The implementation supported enqueue and dequeue in average-case O(1).
• We can also implement a queue using linked lists!
• Idea:
 • To **enqueue**, append a new cell to the end of the list.
 • To **dequeue**, remove the first cell from the list.
Implementing Queue

- Earlier, we implemented a queue using two stacks.
- The implementation supported enqueue and dequeue in average-case $O(1)$.
- We can also implement a queue using linked lists!
- Idea:
 - To **enqueue**, append a new cell to the end of the list.
 - To **dequeue**, remove the first cell from the list.
Implementing Queue

- Earlier, we implemented a queue using two stacks.
- The implementation supported enqueue and dequeue in average-case $O(1)$.
- We can also implement a queue using linked lists!

Idea:
- To **enqueue**, append a new cell to the end of the list.
- To **dequeue**, remove the first cell from the list.
Implementing Queue

- Earlier, we implemented a queue using two stacks.
- The implementation supported enqueue and dequeue in average-case $O(1)$.
- We can also implement a queue using linked lists!

Idea:
- To **enqueue**, append a new cell to the end of the list.
- To **dequeue**, remove the first cell from the list.
Implementing Queue

- Earlier, we implemented a queue using two stacks.
- The implementation supported enqueue and dequeue in average-case O(1).
- We can also implement a queue using linked lists!
- Idea:
 - To **enqueue**, append a new cell to the end of the list.
 - To **dequeue**, remove the first cell from the list.
Implementing Queue

- Earlier, we implemented a queue using two stacks.
- The implementation supported enqueue and dequeue in average-case $O(1)$.
- We can also implement a queue using linked lists!
- Idea:
 - To **enqueue**, append a new cell to the end of the list.
 - To **dequeue**, remove the first cell from the list.
Analyzing Efficiency

• What is the big-O complexity of a dequeue?
 • Answer: $O(1)$.

• What is the big-O complexity of an enqueue?
 • Answer: $O(n)$.
Improving Efficiency

• The $O(n)$ work in enqueue comes from scanning the list to find the end.

• **Idea:** What if we just stored a pointer to the very last cell in the list?
Improving Efficiency

• The $O(n)$ work in enqueue comes from scanning the list to find the end.

• **Idea:** What if we just stored a pointer to the very last cell in the list?
Improving Efficiency

- The $O(n)$ work in enqueue comes from scanning the list to find the end.

- **Idea**: What if we just stored a pointer to the very last cell in the list?

- Can immediately jump to the end to append a value.
Improving Efficiency

- The $O(n)$ work in enqueue comes from scanning the list to find the end.
- **Idea**: What if we just stored a pointer to the very last cell in the list?
- Can immediately jump to the end to append a value.
Improving Efficiency

- The $O(n)$ work in enqueue comes from scanning the list to find the end.
- **Idea**: What if we just stored a pointer to the very last cell in the list?
- Can immediately jump to the end to append a value.
Improving Efficiency

- The $O(n)$ work in enqueue comes from scanning the list to find the end.
- **Idea**: What if we just stored a pointer to the very last cell in the list?
- Can immediately jump to the end to append a value.
Improving Efficiency

- The $O(n)$ work in enqueue comes from scanning the list to find the end.
- **Idea**: What if we just stored a pointer to the very last cell in the list?
- Can immediately jump to the end to append a value.
Improving Efficiency

- The $O(n)$ work in enqueue comes from scanning the list to find the end.
- **Idea**: What if we just stored a pointer to the very last cell in the list?
- Can immediately jump to the end to append a value.
Improving Efficiency

- The $O(n)$ work in enqueue comes from scanning the list to find the end.

- **Idea**: What if we just stored a pointer to the very last cell in the list?

- Can immediately jump to the end to append a value.
Improving Efficiency

- The $O(n)$ work in enqueue comes from scanning the list to find the end.
- **Idea**: What if we just stored a pointer to the very last cell in the list?
- Can immediately jump to the end to append a value.
Improving Efficiency

• The $O(n)$ work in enqueue comes from scanning the list to find the end.

• **Idea**: What if we just stored a pointer to the very last cell in the list?

• Can immediately jump to the end to append a value.
Improving Efficiency

- The $O(n)$ work in enqueue comes from scanning the list to find the end.

- **Idea**: What if we just stored a pointer to the very last cell in the list?

- Can immediately jump to the end to append a value.
New Cases to Consider

- Enqueueing into an empty queue.
New Cases to Consider

- Enqueueing into an empty queue.
New Cases to Consider

- Enqueuing into an empty queue.
New Cases to Consider

- Enqueuing into an empty queue.

- Dequeuing the last element of a queue.
New Cases to Consider

- Enqueuing into an empty queue.

- Dequeuing the last element of a queue.
New Cases to Consider

- Enqueuing into an empty queue.

- Dequeuing the last element of a queue.
Analyzing Efficiency

• What is the big-O complexity of a dequeue?
 • Answer: \(O(1)\).

• What is the big-O complexity of an enqueue?
 • Answer: \(O(1)\).
Analyzing our Queue

- Enqueue and dequeue are now \textbf{worst-case} $O(1)$ instead of \textbf{average-case} $O(1)$.
- What about the total runtime?
Analyzing our Queue

- Enqueue and dequeue are now **worst-case** $O(1)$ instead of **average-case** $O(1)$.
- What about the total runtime?
- **Slower than before.**
- Why?
 - Cost of allocating individual linked list cells exceeds cost of allocating very few blocks and copying values over.
 - Trade average-case for worst-case speed.
Announcements!
Friday Four Square!
Today at 4:15PM at Gates Computer Science
Apply to Section Lead!
http://cs198.stanford.edu
Casual CS Dinner

- Casual dinner for women studying computer science is next **Thursday, May 23** at **5:30PM** at the **Gates Patio**.
- Everyone is welcome!
- RSVP through link sent out earlier today, or at

Hashing
A Genomics Problem

• Suppose that you and I each own a genomics lab in which we store millions of human genomes.
 • Each genome is a six-billion character string.
• We want to compare which genomes we have in common and can communicate over a network.
• Sending data over a network is much slower than processing the data locally.
 • Say, 1,000,000x slower.
• How might we determine which genomes we have in common?
A Naive Solution

- I send you all of my genomes and you compare them against the ones you have.
- **Pros:** Very easy to implement.
- **Cons:** Extremely slow.
 - Might have to transmit thousands of terabytes (*petabytes*) of information!
 - Even on a very fast network, this could take weeks.
A Slightly Better Solution

• I send you the first 1000 characters of each genome. (Remember a genome is six billion characters long).

• You look at the genomes you have that also start with that prefix and let me know which prefixes match.

• I then send you just those genomes, at which point you can find all matches.

• **Pros:** Cuts down data transmitted by a factor of *one million!*

• **Cons:** If many genomes start the same way, I might have to send you a *bunch* of redundant genomes.
Another Possible Solution

• In advance, we count up the number of each type of letter in each of our genomes. This gives a frequency histogram.

• I send you the frequency histograms for each of my genomes.

• You then let me know which histograms match your own histogram.

• I then send you the genomes matching those histograms. From there, you can find the matches.
Yet Another Possible Solution

• In advance, we run the following functions on each of our genomes:

```cpp
string getSynopsis(string& input) {
    string result;
    for (int i = 0; i < input.size(); i += 1000000)
        result += input[i];
    return result;
}
```

• I send you the synopses of each of my genomes.

• You then let me know which of my synopses match your synopses.

• I then send you all genomes matching those synopses, from which you can find all matches.
The Essential Structure

• The general sketch of these latter approaches is:
 • In advance, we find some quick way of summarizing our genomes.
 • I send you just the summaries.
 • You find genomes that match the summaries and let me know which ones match.
 • I only send you complete genomes over the network if this first step yields a match.
 • I might send you more genomes than you need, but I will never send you fewer genomes than you need.
The Essential Structure

The general sketch of these latter approaches is:

- In advance, we find some quick way of summarizing our genomes.

I send you just the summaries.
You find genomes that match the summaries
and let me know which ones match.
I only send you complete genomes over the network if this first step yields a match.
I might send you more genomes than you need, but I will never send you fewer genomes than you need.
Hash Functions

- A **hash function** is a function that converts a large object (a genome, a string, a sequence of elements, etc.) into a smaller object (a shorter string, an integer, etc.)

- A hash function **must** be deterministic: given an input, it must always produce the same output.
 - *Why?*

- A hash function **should** try to produce different outputs for different inputs.
 - Not always possible if there are only finitely many possible outputs.
Why Hash Functions Matter
The Story So Far

- We have now seen two approaches to implementing collections classes:
 - Dynamic arrays: allocating space and doubling it as needed.
 - Linked lists: Allocating small chunks of space one at a time.
- These approaches are good for linear structures, where the elements are stored in some order.
Associative Structures

- Not all structures are linear.
- How do we implement `Map`, `Set`, and `Lexicon` efficiently?
- There are many options; we'll see one today.
An Initial Implementation

• One simple implementation of \texttt{Map} would be to store an array of key/value pairs.

• To look up the value associated with a key, scan across the array and see if it is present.

• To insert a key/value pair, check if the key is mapped. If so, update it. If not, add a new key/value pair.

<table>
<thead>
<tr>
<th>Kitty</th>
<th>Puppy</th>
<th>Ibex</th>
<th>Dikdik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awww...</td>
<td>Cute!</td>
<td>Huggable</td>
<td>Yay!</td>
</tr>
</tbody>
</table>
An Initial Implementation

- One simple implementation of `Map` would be to store an array of key/value pairs.
- To look up the value associated with a key, scan across the array and see if it is present.
- To insert a key/value pair, check if the key is mapped. If so, update it. If not, add a new key/value pair.

<table>
<thead>
<tr>
<th>Kitty</th>
<th>Puppy</th>
<th>Ibex</th>
<th>Dikdik</th>
<th>Hagfish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awww...</td>
<td>Cute!</td>
<td>Huggable</td>
<td>Yay!</td>
<td>Ewww..</td>
</tr>
</tbody>
</table>
An Initial Implementation

- One simple implementation of `Map` would be to store an array of key/value pairs.
- To look up the value associated with a key, scan across the array and see if it is present.
- To insert a key/value pair, check if the key is mapped. If so, update it. If not, add a new key/value pair.

<table>
<thead>
<tr>
<th>Kitty</th>
<th>Puppy</th>
<th>Ibex</th>
<th>Dikdik</th>
<th>Hagfish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awww...</td>
<td>Really Cute!</td>
<td>Huggable</td>
<td>Yay!</td>
<td>Ewww..</td>
</tr>
</tbody>
</table>
Analyzing this Approach

• What is the big-O time complexity of inserting a value?
 • Answer: $O(n)$.

• What is the big-O time complexity of looking up a key?
 • Answer: $O(n)$.
Knowing Where to Look

- Our linked-list **Queue** implementation has O(1) enqueue, dequeue, and front.
- Why is this?
- Know exactly where to look to find or insert a value.
- **Queue** implementation was O(n) for enqueue, but was improved to O(1) by adding extra information about where to insert.
An Example: Clothes
For Large Values of n
Overview of Our Approach

• To store key/value pairs efficiently, we will do the following:
 • Create a lot of **buckets** into which key/value pairs can be distributed.
 • Choose a rule for assigning specific keys into specific buckets.
 • To look up the value associated with a key:
 – Jump into the bucket containing that key.
 – Look at all the values in the bucket until you find the one associated with the key.
How Do We Distribute Elements?

• **Use a hash function!**
 • The input to the hash function is the object to distribute.
 • The output of the function is the index of the bucket in which it should be.

• To do a lookup:
 • Apply the hash function to the object to determine which bucket it belongs to.
 • Look at all elements in the bucket to determine whether it's there.

• This data structure is called a hash table.
Distributing Keys

• When distributing keys into buckets, we want the distribution to be as even as possible.
• Best-case: totally even spread.
• Worst-case: everything bunched up.
Distributing Keys

- When distributing keys into buckets, we want the distribution to be as even as possible.
- Best-case: totally even spread.
- Worst-case: everything bunched up.
Distributing Keys

- We want to choose a hash function that will distribute elements as evenly as possible to try to guarantee a nice, even spread.
- Suppose you want to build a hash function for names.
- One initial idea: Hash each last name to the first letter of that last name.
- How well will this distribute elements?
CS106B Name Distributions

By First Letter of Last Name
Benford's Law

http://en.wikipedia.org/wiki/File:Benfords_law_illustrated_by_world%27s_countries_population.png
Benford's Law
Building a Better Hash Function

- Designing good hash functions requires a level of mathematical sophistication far beyond the scope of this course.
 - Take CS161 for details!
- Generally, hash functions work as follows:
 - Scramble the input up in a way that converts it to a positive integer.
 - Using the % operator, wrap the value from a positive integer to something in the range of buckets.
Good Hash Functions

- A good hash function typically will scramble all of the bits of the input together in a way that appears totally random.
- Hence the name “hash function.”
Some Interesting Numbers

• For 451 students and 26 buckets, given an optimal distribution of names into buckets, an average of 8.65 lookups are needed.

• Using first letter of first name: an average of 12.7 lookups are needed.

• Using the SAX hash function: an average of 9.6 lookups are needed.

• That's 25% faster than by first letter!