Graphs
A Social Network
PANFLUTE FLOWCHART

do you need one

no

no panflute

yes

no you don't
A **graph** is a mathematical structure for representing relationships.
A **graph** is a mathematical structure for representing relationships.
A **graph** is a mathematical structure for representing relationships.
A **graph** is a mathematical structure for representing relationships.

A graph consists of a set of **nodes** connected by **edges**.
A graph is a mathematical structure for representing relationships.

A graph consists of a set of nodes connected by edges.
A **graph** is a mathematical structure for representing relationships.

A graph consists of a set of **nodes** connected by **edges**.
Some graphs are directed.
Some graphs are **undirected**.
Some graphs are **undirected**.

You can think of them as directed graphs with edges both ways.
How can we represent graphs in C++?
We can represent a graph as a map from nodes to the list of nodes each node is connected to.
Other Representations

UNCO
OPYRI
GHTA
BLES
Other Representations
Other Representations
Other Representations
The Wikipedia Graph

- Wikipedia (and the web in general) is a graph!
- Each page is a node.
- There is an edge from one page to another if the first page links to the second.
Iterating over a Graph

- Given a linked list, there was just one way to traverse the list.
 - Keep going forward.
- In a binary search tree, there are many traversal strategies:
 - An *inorder* traversal that produces all the elements in sorted order.
 - A *postorder* traversal used to delete all the nodes in the BST.
- There are *many* ways to iterate over a graph.
Depth-First Search

- To do a depth-first search (DFS) from a node u, do the following:
 - If u is already marked, stop.
 - Mark u.
 - For each neighbor v of u:
 - Recursively run DFS from v.
- The backtracking here is similar to the backtracking done in standard recursion.
Coding Depth-First Search

This structure is called a depth-first search tree. Notice how following the arrows from any node will trace a path to the starting node in reverse.
Mazes as Graphs
Mazes as Graphs
Mazes as Graphs

![Maze Graph Diagram]
Mazes as Graphs
Creating a Maze with DFS

- Create a **grid graph** of the appropriate size.

 ![Grid Graph](image)

- Starting at any node, run a depth-first search, choosing neighbor orderings at random.

- The resulting DFS tree is a maze with one solution.
Problems with DFS

- What happens if you want to search for a specific node in the graph?
Problems with DFS

- What happens if you want to search for a specific node in the graph?
Problems with DFS

- What happens if you want to search for a specific node in the graph?
Problems with DFS

- What happens if you want to search for a specific node in the graph?
Breadth-First Search

Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search

Diagram showing a graph with nodes A, B, C, D, E, F, G, H, I, J, K, and L.
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search

A → B → C → D
E → F → G → H
I → J → K
L → G → L
Breadth-First Search

Diagram of a graph showing nodes A, B, C, D, E, F, G, H, I, J, K, L connected with edges.
Breadth-First Search
Breadth-First Search

This structure is called a shortest-path tree. Notice how following the arrows from any node will trace a shortest path back to the root in reverse.
For Comparison: DFS
For Comparison: BFS
CAN → MAN → RAN

CAN ← MAN ← RAN
Next Time

• **Shortest Paths**
 • Dijkstra's Algorithm.
 • Shortest-Path Trees
 • A* Search.
 • ITA: Minimum Spanning Trees I