

Welcome to CS106B!

● Today:
● Course Overview
● Where are We Going?
● Introduction to C++

Course Staff

Instructor: Aubrey Gress
(adgress@cs.stanford.edu)

Head TA: Michael Chang
(mchang91@cs.stanford.edu)

The CS106B Section Leaders
The CS106B Course Helpers

http://cs106b.stanford.edu

Course Website

http://cs106b.stanford.edu/

Prerequisites

CS106A
(or equivalent)

Background Topics

● We assume you are familiar with:
● Variables

● Parameter passing

● Functions

● Classes and Objects

● For/While Loops

● If/else statements

● Okay if you need to do some background reading
● Most important thing is that you have some

experience taking a problem and turning it into code

Required Reading

Required Reading

● Hard copies in the book store, electronic
copy on the website.
● Exams this quarter will not be open note

(more on this in a couple slides).
● You don't have to buy the hard copy, but it is

highly recommended.

Grading Policies

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section Participation

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section ParticipationSix Programming

Assignments

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section Participation

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section ParticipationFirst Midterm Exam

July 22nd, 7-10pm

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section ParticipationFirst Midterm Exam

July 22nd, 7-10pm

Exam will not be written to take 3
hours. It will be written to take ~1

hour.

Exams are stressful and we want
to eliminate at least one form of

stress (the time component).

Exam will not be written to take 3
hours. It will be written to take ~1

hour.

Exams are stressful and we want
to eliminate at least one form of

stress (the time component).

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section Participation

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section ParticipationSecond Midterm

Exam

August 12th, 7-
10pm

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section Participation

Exams

● Historically exams have been open note.
This quarter the exam will not be open
note
● Rational: Allows us to ask simpler questions

and ask more knowledge based questions.
● Remember the course is curved.

● Before the first exam I'll cover strategies
for studying the exam.

Discussion Sections

● Weekly discussion sections.
● Section attendance is required in

CS106B.
● Sign up between Thursday, June 27 at

5PM and Sunday, June 30 at 5PM at

http://cs198.stanford.edu/section

● You don't need to (and shouldn't!) sign up
for a section on Axess; everything is
handled through the above link.

http://cs198.stanford.edu/section

Discussion Sections

● Roughly ~10 students per section
● Get more experience using problem

solving techniques from lecture

How Many Units?

How Many Units?

int numUnits(bool isGrad, bool wantsFewerUnits) {

 if (!isGrad) return 5;
 if (!wantsFewerUnits) return 5;
 if (reallyBusy()) {

 return 3;
 } else {

 return 4;
 }
}

How Many Units?

int numUnits(bool isGrad, bool wantsFewerUnits) {

 if (!isGrad) return 5;
 if (!wantsFewerUnits) return 5;
 if (reallyBusy()) {

 return 3;
 } else {

 return 4;
 }
}

How Many Units?

int numUnits(bool isGrad, bool wantsFewerUnits) {

 if (!isGrad) return 5;
 if (!wantsFewerUnits) return 5;
 if (reallyBusy()) {

 return 3;
 } else {

 return 4;
 }
}

How Many Units?

int numUnits(bool isGrad, bool wantsFewerUnits) {

 if (!isGrad) return 5;
 if (!wantsFewerUnits) return 5;
 if (reallyBusy()) {

 return 3;
 } else {

 return 4;
 }
}

How Many Units?

int numUnits(bool isGrad, bool wantsFewerUnits) {

 if (!isGrad) return 5;
 if (!wantsFewerUnits) return 5;
 if (reallyBusy()) {

 return 3;
 } else {

 return 4;
 }
}

Getting Help

Getting Help

● LaIR Hours: Run by Section Leaders
● Sunday – Wednesday, 7PM – 11PM
● Starts next week.
● Great time/place to work on

assignments!
● Mike's Office Hours in Gates 160

● Tuesday/Wednesday 3PM – 5PM

● Aubrey's Office Hours in Gates 160
● Monday-Thursday 12PM - 1PM
● Or by Appointment!

What's Next in Computer Science?

Goals for this Course

● Learn how to model and solve
complex problems with computers.

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.

To that end:
● Explore common abstractions for

representing problems.

Harness recursion and understand how to
think about problems recursively.

Quantitatively analyze different approaches
for solving problems.

http://www.publicdomainpictures.net/pictures/10000/velka/1-1265899974oKJ9.jpg

http://www.publicdomainpictures.net/pictures/10000/velka/1-1265899974oKJ9.jpg

Sentence

Subject Verb Phrase Object

CS106B

Adverb Verb Possessive Noun

totally rocks my socks

Noun

http://www.virginia.gov/images/wholeexecbranch2.jpg

http://en.wikipedia.org/wiki/File:Tree_of_life_SVG.svg

Hey, that's us!Hey, that's us!

Building a vocabulary of abstractions
 makes it possible to represent and

solve a wider class of problems.

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.

To that end:

Explore common abstractions for
representing problems.

● Harness recursion and understand how to
think about problems recursively.

Quantitatively analyze different approaches
for solving problems.

Recursion: Fibonacci Numbers

● Fibonacci Numbers
● 0, 1, 1, 2, 3, 5, 8, 13, 21, …
● Defined recursively:

● What would this look like in code?

fib(n) = n if n = 0 or 1
fib(n-1) + fib(n-2) otherwise

Recursion: Fibonacci Numbers

● Fibonacci Numbers
● 0, 1, 1, 2, 3, 5, 8, 13, 21, …
● Defined recursively:

● What would this look like in code?
● It's okay if this is hard to think about! It

is for most people when they see it for
the first (and second and third) time.

fib(n) = n if n = 0 or 1
fib(n-1) + fib(n-2) otherwise

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

A recursive solution is a solution that is
defined in terms of “smaller” instances of

itself.

Thinking recursively allows you
to solve an enormous class of

problems cleanly and concisely.

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.

To that end:

Explore common abstractions for
representing problems.

Harness recursion and understand how to
think about problems recursively.

● Quantitatively analyze different approaches
for solving problems.

What makes an algorithm “fast” or “slow”?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

Travel Time: 13 + 15 + 17 + 14 + 11 + 9 + 12 = 91

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

Travel Time: 10 + 17 + 7 + 14 + 13 + 4 + 7 = 72

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

In an n × n grid, there are at least
4n / n possible paths from one

corner to another.

If n = 154, this is approximately
equal to the number of atoms in

the universe.

In an n × n grid, there are at least
4n / n possible paths from one

corner to another.

If n = 154, this is approximately
equal to the number of atoms in

the universe.

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

In an n × n grid, there are at least
4n / n possible paths from one

corner to another.

If n = 50, it would take the lifetime
of the universe to list off all

possible paths.

In an n × n grid, there are at least
4n / n possible paths from one

corner to another.

If n = 50, it would take the lifetime
of the universe to list off all

possible paths.

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0
10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0
10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10?

13?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10?

13?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

10?

0 10

13?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

17?13?

27?
10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

17?13?

27?
10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

13?

0 10

17?13

27?
10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

17?13

27?

28?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

17?13

27?

28?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

17?17?17?

0 10

1713

27?

22?

28? 27?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

27?

22?

28? 27?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

22?

0 10

1713

27?

22

28? 27?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25?

40?22

28? 27? 29?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25

40?22

28? 27? 29?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32?

40?22

28? 27? 29?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32?

40?22

28? 27 29?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32?

40?22

28? 27

40?

29?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32?

40?22

28 27

40?

29?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32?

40?22

28 27

40?45?

29?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32?

40?22

28 27

40?45?

29

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32?

40?22

28 27

40?45?

29 36?

38?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

40?22

28 27

40?45?

29 36?

38?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

40?22

28 27

40?45?

29 36?

38?

46?
10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

40?22

28 27

40?45?

29 36

38?

46?
10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

38?22

28 27

40?45?

29 36

50?38?

46?

56?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

38?22

28 27

40?45?

29 36

50?38

46?

56?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

38?22

28 27

40?45?

29 36

47?38

46?

56?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

3822

28 27

40?45?

29 36

47?38

46?

56?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

3822

28 27

40?45?

29 36

47?38

46?

42?

56?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

3822

28 27

4045?

29 36

47?38

46?

42?

56?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

3822

28 27

4045?

29 36

47?38

46?

42

56?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

3822

28 27

4045?

29 36

47?38

46?

42

46?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

3822

28 27

4045

29 36

47?38

46?

42

46?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

3822

28 27

4045

29 36

47?38

46?

42

46

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

3822

28 27

4045

29 36

47?38

46?

42

46

53?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

3822

28 27

4045

29 36

47?38

46

42

46

53?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

3822

28 27

4045

29 36

4738

46

42

46

53?

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

3822

28 27

4045

29 36

4738

46

42

46

53

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

3822

28 27

4045

29 36

4738

46

42

46

53

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

3822

28 27

4045

29 36

4738

46

42

46

53

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

This approach is called
Dijkstra's Algorithm.

Google Maps uses a slightly
modified version of this algorithm.

For an n × n grid, it requires
(roughly speaking) n log n

operations to find the shortest path.

This approach is called
Dijkstra's Algorithm.

Google Maps uses a slightly
modified version of this algorithm.

For an n × n grid, it requires
(roughly speaking) n log n

operations to find the shortest path.

0 10

1713

25 32

3822

28 27

4045

29 36

4738

46

42

46

53

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

This approach is called
Dijkstra's Algorithm.

Google Maps uses a slightly
modified version of this algorithm.

For an n × n grid, it requires
(roughly speaking) n log n

operations to find the shortest path.

This approach is called
Dijkstra's Algorithm.

Google Maps uses a slightly
modified version of this algorithm.

For an n × n grid, it requires
(roughly speaking) n log n

operations to find the shortest path.

0 10

1713

25 32

3822

28 27

4045

29 36

4738

46

42

46

53

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

This approach is called
Dijkstra's Algorithm.

Google Maps uses a slightly
modified version of this algorithm.

For an n × n grid, it requires some
multiple of n2 log n operations to

find the shortest path.

This approach is called
Dijkstra's Algorithm.

Google Maps uses a slightly
modified version of this algorithm.

For an n × n grid, it requires some
multiple of n2 log n operations to

find the shortest path.

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

Secondary Goal

● Get better at writing “good” code
● What makes code “good”?

Example: Naming

int numUnits(bool isGrad, bool wantsFewerUnits) {

 if (!isGrad) return 5;
 if (!wantsFewerUnits) return 5;
 if (reallyBusy()) {

 return 3;
 } else {

 return 4;
 }
}

Example: Naming

int NU(bool isGrad, bool wantsFewerUnits) {

 if (!isGrad) return 5;
 if (!wantsFewerUnits) return 5;
 if (reallyBusy()) {

 return 3;
 } else {

 return 4;
 }
}

Example: Naming

int NU(bool IG, bool WFU) {

 if (!IG) return 5;
 if (!WFU) return 5;
 if (reallyBusy()) {

 return 3;
 } else {

 return 4;
 }
}

Secondary Goal

● Get better at writing “good” code
● What makes code “good”?

Secondary Goal

● Get better at writing “good” code
● What makes code “good”?

● One possible definition: code that's easy
to understand, use and build upon
● e.g. How hard would it be for someone to

start working with this code?

Secondary Goal

● Get better at writing “good” code
● What makes code “good”?

● One possible definition: code that's easy
to understand, use and build upon
● e.g. How hard would it be for someone to

start working with this code?

● Get better at this with practice, examples
from class/section/course reader, advice
from section leaders

One more detail...

 C + +

What is C++?

● Programming language developed in
1983 by Bjarne Stroustrup.

● Widely used for general programming
when performance is important.

● Supports a variety of programming
styles.

C++ and CS106B

● The focus of CS106B is developing a set
of problem solving skills.

● Learning C++ is not the focus of CS106B
● We teach you just enough C++ in order

to cover the topics in the course.
● C++ just happens to be a useful language to

cover these topics.

/* File: hello-world.cpp
 *
 * A canonical Hello, world! program
 * in C++.
 */

#include <iostream>
using namespace std;

int main() {
 cout << "Hello, world!" << endl;
}

#include ~ import
cout ~ println()

#include ~ import
cout ~ println()

/* File: retain-evens.cpp
 *
 * A program to filter out odd numbers from a list.
 */
#include <iostream>
#include "vector.h"
using namespace std;

Vector<int> retainEvens(Vector<int> values) {
 Vector<int> result;
 for (int i = 0; i < values.size(); i++) {
 if (values[i] % 2 == 0)
 result += values[i];
 }
 return result;
}

int main() {
 Vector<int> values;
 values += 1, 2, 3, 4, 5;

 Vector<int> processed = retainEvens(values);

 for (int i = 0; i < processed.size(); i++) {
 cout << processed[i] << endl;
 }
}

Vector<int> ~ ArrayList<int>Vector<int> ~ ArrayList<int>

C++

● Takeaway Point: Learning a new
programming language is not like
learning a new spoken language.
● Most languages have similar features

CS106L

● Not offered over the Summer :(
● Optional, one-unit companion course to

CS106B.
● In-depth treatment of C++'s libraries

and language features.
● Excellent complement to the material

from CS106B; highly recommended!

Having a Good Time in CS106B

● Start assignments early.
● Work during LAIR hours so you can ask a

section leader if you have any questions.
● Go to section.
● Learn to use the debugger.
● Ask questions in lecture and section!

Next Time

● Welcome to C++!
● Defining functions.
● Reference parameters.
● Introduction to recursion.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127

