
  

Welcome to CS106B!

● Today:
● Course Overview
● Where are We Going?
● Introduction to C++



  

Course Staff

Instructor: Aubrey Gress
(adgress@cs.stanford.edu)

Head TA: Michael Chang
(mchang91@cs.stanford.edu)

The CS106B Section Leaders
The CS106B Course Helpers



  

http://cs106b.stanford.edu

Course Website

http://cs106b.stanford.edu/


  

Prerequisites

CS106A
(or equivalent)



  

Background Topics

● We assume you are familiar with:
● Variables

● Parameter passing

● Functions

● Classes and Objects

● For/While Loops

● If/else statements

● Okay if you need to do some background reading
● Most important thing is that you have some 

experience taking a problem and turning it into code



  

Required Reading



  

Required Reading

● Hard copies in the book store, electronic 
copy on the website.
● Exams this quarter will not be open note 

(more on this in a couple slides).
● You don't have to buy the hard copy, but it is 

highly recommended.



  

Grading Policies
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55% Assignments
20% First Midterm
20% Second Midterm
5% Section Participation
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55% Assignments
20% First Midterm
20% Second Midterm
5% Section ParticipationFirst Midterm Exam

July 22nd, 7-10pm

Exam will not be written to take 3 
hours.  It will be written to take ~1 

hour.

Exams are stressful and we want 
to eliminate at least one form of 

stress (the time component).

Exam will not be written to take 3 
hours.  It will be written to take ~1 

hour.

Exams are stressful and we want 
to eliminate at least one form of 

stress (the time component).



  

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section Participation



  

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section ParticipationSecond Midterm 

Exam

August 12th, 7-
10pm



  

Grading Policies

55% Assignments
20% First Midterm
20% Second Midterm
5% Section Participation



  

Exams

● Historically exams have been open note.  
This quarter the exam will not be open 
note
● Rational: Allows us to ask simpler questions 

and ask more knowledge based questions.
● Remember the course is curved.

● Before the first exam I'll cover strategies 
for studying the exam.



  

Discussion Sections

● Weekly discussion sections.
● Section attendance is required in 

CS106B.
● Sign up between Thursday, June 27 at 

5PM and Sunday, June 30 at 5PM at

http://cs198.stanford.edu/section
  

● You don't need to (and shouldn't!) sign up 
for a section on Axess; everything is 
handled through the above link.

http://cs198.stanford.edu/section


  

Discussion Sections

● Roughly ~10 students per section
● Get more experience using problem 

solving techniques from lecture
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How Many Units?

int numUnits(bool isGrad, bool wantsFewerUnits) {

    if (!isGrad) return 5;
    if (!wantsFewerUnits) return 5;
    if (reallyBusy()) {

       return 3;
    } else {

       return 4;
    }
}
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How Many Units?

int numUnits(bool isGrad, bool wantsFewerUnits) {

    if (!isGrad) return 5;
    if (!wantsFewerUnits) return 5;
    if (reallyBusy()) {

       return 3;
    } else {

       return 4;
    }
}
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Getting Help

● LaIR Hours: Run by Section Leaders
● Sunday – Wednesday, 7PM – 11PM
● Starts next week.
● Great time/place to work on 

assignments!
● Mike's Office Hours in Gates 160

● Tuesday/Wednesday 3PM – 5PM

● Aubrey's Office Hours in Gates 160
● Monday-Thursday 12PM - 1PM
● Or by Appointment!



  

What's Next in Computer Science?
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● Learn how to model and solve 
complex problems with computers.
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● Quantitatively analyze different approaches 

for solving problems.



  

Goals for this Course

Learn how to model and solve 
complex problems with computers.

To that end:
● Explore common abstractions for 

representing problems.

Harness recursion and understand how to 
think about problems recursively.

Quantitatively analyze different approaches 
for solving problems.



  

http://www.publicdomainpictures.net/pictures/10000/velka/1-1265899974oKJ9.jpg
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Sentence

Subject Verb Phrase Object

CS106B

Adverb Verb Possessive Noun

totally rocks my socks

Noun



  

http://www.virginia.gov/images/wholeexecbranch2.jpg



  



  



  



  



  

http://en.wikipedia.org/wiki/File:Tree_of_life_SVG.svg

Hey, that's us!Hey, that's us!



  



  

Building a vocabulary of abstractions
      makes it possible to represent and 

solve a wider class of problems.
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To that end:

Explore common abstractions for 
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Quantitatively analyze different approaches 
for solving problems.



  

Recursion: Fibonacci Numbers

● Fibonacci Numbers
● 0, 1, 1, 2, 3, 5, 8, 13, 21, …
● Defined recursively:

● What would this look like in code?

fib(n) = n                  if n = 0 or 1
fib(n-1) + fib(n-2)  otherwise



  

Recursion: Fibonacci Numbers

● Fibonacci Numbers
● 0, 1, 1, 2, 3, 5, 8, 13, 21, …
● Defined recursively:

● What would this look like in code?
● It's okay if this is hard to think about!  It 

is for most people when they see it for 
the first (and second and third) time.

fib(n) = n                  if n = 0 or 1
fib(n-1) + fib(n-2)  otherwise



  

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg



  

A recursive solution is a solution that is 
defined in terms of “smaller” instances of 

itself.



  

Thinking recursively allows you
to solve an enormous class of

problems cleanly and concisely.
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Goals for this Course

Learn how to model and solve 
complex problems with computers.

To that end:

Explore common abstractions for 
representing problems.

Harness recursion and understand how to 
think about problems recursively.

● Quantitatively analyze different approaches 
for solving problems.



  

What makes an algorithm “fast” or “slow”?
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Travel Time: 13 + 15 + 17 + 14 + 11 + 9 + 12 = 91
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Travel Time: 10 + 17 + 7 + 14 + 13 + 4 + 7 = 72
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In an n × n grid, there are at least 
4n / n possible paths from one 

corner to another.

If n = 154, this is approximately 
equal to the number of atoms in 

the universe.

In an n × n grid, there are at least 
4n / n possible paths from one 

corner to another.

If n = 154, this is approximately 
equal to the number of atoms in 

the universe.
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In an n × n grid, there are at least 
4n / n possible paths from one 

corner to another.

If n = 50, it would take the lifetime 
of the universe to list off all 

possible paths.

In an n × n grid, there are at least 
4n / n possible paths from one 

corner to another.

If n = 50, it would take the lifetime 
of the universe to list off all 

possible paths.
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This approach is called
Dijkstra's Algorithm.

Google Maps uses a slightly 
modified version of this algorithm.

For an n × n grid, it requires some 
multiple of n2 log n operations to 

find the shortest path.

This approach is called
Dijkstra's Algorithm.

Google Maps uses a slightly 
modified version of this algorithm.

For an n × n grid, it requires some 
multiple of n2 log n operations to 

find the shortest path.



  

Goals for this Course

● Learn how to model and solve 
complex problems with computers.

● To that end:
● Explore common abstractions for 

representing problems.
● Harness recursion and understand how to 

think about problems recursively.
● Quantitatively analyze different approaches 

for solving problems.



  

Secondary Goal

● Get better at writing “good” code
● What makes code “good”?



  

Example: Naming

int numUnits(bool isGrad, bool wantsFewerUnits) {

    if (!isGrad) return 5;
    if (!wantsFewerUnits) return 5;
    if (reallyBusy()) {

       return 3;
    } else {

       return 4;
    }
}
    



  

Example: Naming

int NU(bool isGrad, bool wantsFewerUnits) {

    if (!isGrad) return 5;
    if (!wantsFewerUnits) return 5;
    if (reallyBusy()) {

       return 3;
    } else {

       return 4;
    }
}
    



  

Example: Naming

int NU(bool IG, bool WFU) {

    if (!IG) return 5;
    if (!WFU) return 5;
    if (reallyBusy()) {

       return 3;
    } else {

       return 4;
    }
}
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start working with this code?



  

Secondary Goal

● Get better at writing “good” code
● What makes code “good”?

● One possible definition: code that's easy 
to understand, use and build upon
● e.g. How hard would it be for someone to 

start working with this code?

● Get better at this with practice, examples 
from class/section/course reader, advice 
from section leaders



  

One more detail...



  

 C  + +



  

What is C++?

● Programming language developed in 
1983 by Bjarne Stroustrup.

● Widely used for general programming 
when performance is important.

● Supports a variety of programming 
styles.



  

C++ and CS106B

● The focus of CS106B is developing a set 
of problem solving skills. 

● Learning C++ is not the focus of CS106B
● We teach you just enough C++ in order 

to cover the topics in the course.
● C++ just happens to be a useful language to 

cover these topics.



  

/* File: hello-world.cpp
 *
 * A canonical Hello, world! program
 * in C++.
 */

#include <iostream>
using namespace std;

int main() {
    cout << "Hello, world!" << endl;
}

#include ~ import
cout ~ println()

#include ~ import
cout ~ println()



  

/* File: retain-evens.cpp
 *
 * A program to filter out odd numbers from a list.
 */
#include <iostream>
#include "vector.h"
using namespace std;

Vector<int> retainEvens(Vector<int> values) {
    Vector<int> result;
    for (int i = 0; i < values.size(); i++) {
        if (values[i] % 2 == 0)
            result += values[i];
    }
    return result;
}

int main() {
    Vector<int> values;
    values += 1, 2, 3, 4, 5;

    Vector<int> processed = retainEvens(values);

    for (int i = 0; i < processed.size(); i++) {
        cout << processed[i] << endl;
    }
}

Vector<int> ~ ArrayList<int>Vector<int> ~ ArrayList<int>



  

C++

● Takeaway Point: Learning a new 
programming language is not like 
learning a new spoken language.
● Most languages have similar features



  

CS106L

● Not offered over the Summer :(
● Optional, one-unit companion course to 

CS106B.
● In-depth treatment of C++'s libraries 

and language features.
● Excellent complement to the material 

from CS106B; highly recommended!



  

Having a Good Time in CS106B

● Start assignments early.
● Work during LAIR hours so you can ask a 

section leader if you have any questions.
● Go to section.
● Learn to use the debugger.
● Ask questions in lecture and section!



  

Next Time

● Welcome to C++!
● Defining functions.
● Reference parameters.
● Introduction to recursion.
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