

Strings and Streams

Question Hut!

Question Hut!

● Very useful!
● Great for general questions that other

students may be having. For example:
● “How does this code from lecture work?”
● “When would I use a HashMap as opposed to

a Vector?”

● Please don't post your code.

LAIR Hours Start Today

● Sunday-Wednesday, 7-11PM
● Great place to work on assignments

Bad Style #4

const int kSumMax = 10;

int sum;

int main() {

 sum = 0;

 for (int i = 0; i < kSumMax; i++) {

 sum += i;

 }

 cout << “Sum:” << sum;

 return 0;

}

Bad Style #4

const int kSumMax = 10;

int sum;

int main() {

 sum = 0;

 for (int i = 0; i < kSumMax; i++) {

 sum += i;

 }

 cout << “Sum:” << sum;

 return 0;

}

Global Variable!Global Variable!

Good Style #4

const int kSumMax = 10;

int main() {

 int sum = 0;

 for (int i = 0; i < kSumMax; i++) {

 sum += i;

 }

 cout << “Sum:” << sum;

 return 0;

}

Another View of Factorials

n! = 1 if n = 0
n × (n – 1)! otherwise

int factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

Today

● C++ Strings
● Recursion with Strings
● Reading Files in C++
● Parameter Passing and Common

Mistakes

Today

● C++ Strings
● Recursion with Strings
● Reading Files in C++
● Parameter Passing and Common

Mistakes

Strings

● A string is a (possibly empty) sequence
of characters.

● Strings in C++ are conceptually similar
to strings in Java.

● There are several minor differences:
● Different names for similar methods.
● Different behavior for similar methods

● And some really major differences:
● Two types of strings in C++.

C++ Strings

● C++ strings are represented with the
string type.

● To use string, you must

 #include <string>

at the top of your program.
● You can get the number of characters in

a string by calling

str.length()

C++ Strings

● You can read a single character in a
string by writing

str[index]

● Despite the above syntax, C++ strings
are not arrays; it's just a convenient
syntactic shortcut.

Operations on Characters

● In C++, the header <cctype> contains a
variety of useful functions that you can
apply to characters.

● The following functions check whether a
character is of a given type:

isalpha isdigit
isalnum islower isupper

isspace ispunct

Strings are Mutable

● Unlike Java strings, C++ strings are
mutable and can be modified.

● Change an individual character:

str[index] = ch

● Append more text:

str += text

● These operations directly change the
string itself, rather than making a copy of
the string.

Other Important Differences

● In C++, the == operator can directly be used to compare strings:

 if (str1 == str2) {
 /* strings match */
 }

● You can search a string for some other string by using find
(instead of indexOf). find returns string::npos instead of -1 if
the string isn't found:

 if (str1.find(str2) != string::npos) {
 /* found str2 inside str1 */
 }

● You can get a substring of a string by calling the substr method.
substr takes in a start position and length (not an end position!)

 string allButFirstChar = str.substr(1);
 string lastFiveChars = str.substr(str.length() - 5, 5);

Even More Differences

● In Java, you can concatenate just about
anything with a string.

● In C++, you can only concatenate strings
and characters onto other strings.

● We provide a library "strlib.h" to make
this easier.
string s = "I like " + integerToString(137);

And the Biggest Difference

● In C++, there are two types of strings:
● C-style strings, inherited from the C

programming language
● C++ strings, a library implemented in C++.

● Any string literal is a C-style string.
● Most of the operations we've just

described work on C-style strings.
● Takeaway point: Be careful with string

literals in C++.
● Use the string type whenever possible.

string s = "Nubian " + "ibex";

string s = "Nubian " + "ibex";

Each of these strings is a C-style
string, and C-style strings cannot be

added with +. This code doesn't
compile.

Each of these strings is a C-style
string, and C-style strings cannot be

added with +. This code doesn't
compile.

string s = "Nubian " + "ibex";

string s = string("Nubian ") + "ibex";

string s = string("Nubian ") + "ibex";

Now that we explicitly add a cast from a
C-style string to a C++-style string, this code is legal.
 If you need to perform concatenations like this ones,
make sure to cast at least one of the string literals to

a C++ string.

Now that we explicitly add a cast from a
C-style string to a C++-style string, this code is legal.
 If you need to perform concatenations like this ones,
make sure to cast at least one of the string literals to

a C++ string.

Today

● C++ Strings
● Recursion with Strings
● Reading Files in C++
● Parameter Passing and Common

Mistakes

Thinking Recursively

if (problem is sufficiently simple) {

 Directly solve the problem.

 Return the solution.

 } else {

 Split the problem up into one or more smaller
problems with the same structure as the original.

 Solve each of those smaller problems.

 Combine the results to get the overall solution.

 Return the overall solution.

}

Thinking Recursively

1 2 5 8

1 2 5 8

Thinking Recursively

I B E X

I B E X

Reversing a String

N u b i a n I b e x

x e b I n a i b u N

Reversing a String

N u b i a n I b e x

x e b I n a i b u N

Reversing a String

N u b i a n I b e x

x e b I n a i b u N

Reversing a String

N b i a n I b e x

x e b I n a i b Nu

u

Reversing a String

N b i a n I b e x

x e b I n a i b Nu

u

Reverse String: Iterative
reverse.cpp
(On Board)

Reversing a String Recursively

● Remember that every recursive
algorithm has two components: the base
case and the recursive decomposition

● What are these for reverse string?
● Base Case: “When is a string so simple that I

already know it's reverse?”
● Recursive Decomposition: “How can I 'shrink' the

string to make forward progress?”

Reversing a String Recursively

● Remember that every recursive
algorithm has two components: the base
case and the recursive decomposition

● What are these for reverse string?
● Base Case: “When is a string so simple that I

already know it's reverse?”
● Recursive Decomposition: “How can I 'shrink' the

string to make forward progress?”

Reverse String: Recursive
(On Board)

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

TO Preverse(" ") +

OPreverse(" ") +

Preverse("") +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

TO Preverse(" ") +

OPreverse(" ") +

P"" +

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

TO Preverse(" ") +

OPreverse(" ") +

P

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

TO Preverse(" ") +

OPreverse(" ") +

P

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

TO Preverse(" ") +

O +

P

P

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

TO Preverse(" ") +

O

P

P

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

TO Preverse(" ") +

O

P

P

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

T +

O

P

P

OP

Reversing a String Recursively

T O Preverse(" ") =

O Preverse(" ") =

Preverse(" ") =

reverse("") = ""

T

O

P

P

OP

Palindromes

● A palindrome is a string whose letters
are the same forwards and backwards.

● For example:
● Go hang a salami! I'm a lasagna hog.
● Mr. Owl ate my metal worm.
● Anne, I vote more cars race Rome to Vienna.

Recursive Palindromes

● Base case: “When is the string so simple
that I can immediately tell whether or
not it's a palindrome?”

● Recursive Decomposition: “How can I
simplify the the string?”

Recursive Palindromes

● Base case: “When is the string so simple
that I can immediately tell whether or
not it's a palindrome?”

● Recursive Decomposition: “How can I
simplify the the string?”

Palindrome: Recursive
palindrome.cpp
(On Computer)

Thinking Recursively

r a c e c a r

a c e c a

c e c

e

"

"

"

" "

"

"

"

Thinking Recursively

p o p p o p

o p p o

p p

"

"

" "

"

"

Thinking Recursively

p o p p o p

o p p o

p p

"

"

" "

"

"

" "

Today

● C++ Strings
● Recursion with Strings
● Reading Files in C++
● Parameter Passing and Common

Mistakes

Getting Data from Files

● Now that we have strings, we can start
working with data pulled in from external
files.

● File reading in C++ is done using the
ifstream class.
● Must #include <fstream> to use ifstream.

Reading Line by Line

● You can read a line out of an ifstream by
using the getline function:

getline(file, str)

● The canonical “read each line of a file
loop” is shown here:

 string line;
 while (getline(file, line)) {
 /* … process line … */
 }

● Chapter 4 of the course reader has
more details about file I/O in C++;
highly recommended!

Reading Files: palindrome.cpp
(On Computer)

Reading Formatted Data

● You can read formatted data from a file by
using the stream extraction operator:

file >> variable
● Can read any primitive type, plus strings.

● When reading strings, stops at newlines or
whitespace.

● Canonical “read formatted data loop:”

 type val;
 while (file >> val) {
 /* … process val … */
 }

Today

● C++ Strings
● Recursion with Strings
● Reading Files in C++
● Parameter Passing and Common

Mistakes

Parameter Passing

● In C++ there are two ways to pass a
variable to a function:
● By value: variable passed to function is

copied
void myFunction(int x);

● By reference: variable passed to function
can be modified in the function

void myFunction(int &x)

Parameter Passing
int main() {

int x = 10;
int y = 20;
//Here: x = 10, y = 20
sum(x,y);
//Here: x = 10, y = 20
swap(x,y);
//Here: x = 20, y = 10
cout << x << “ “ << y << endl;
return 0;

}

//Pass by reference
void swap(int &x, int &y) {

int temp = x;
x = y;
y = temp;

}
//Pass by value
void printSum(int x, int y) {

x += y;
cout << x << endl;

}

Common C++ Mistakes

● If you need to use a function in one of
our libraries, remember to #include the
file it is in!

#include “simpio.h”

● Prototype functions before you use them!
bool isPrime(int x);

● Variables are not initialized to 0!
int x = 0;

Next Time

● Stack
● A surprisingly useful collection class.

● TokenScanner
● A tool for cutting apart strings.

● The Shunting-Yard Algorithm
● How do computers parse expressions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	After this slide, do a quick char-by-char printing example.
	Slide 13
	Now do "remove punctuation and spaces"
	Do "convertToUpperCase"
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

