

Collections, Part One

Announcements

● Section signups open today at 5PM and
close Sunday at 5PM.

● Sign up for section at

http://cs198.stanford.edu/section
● Link available on the CS106B course

website.

http://cs198.stanford.edu/section

In Person vs. Remote Sections

● In order to keep section sizes small we are offering two
types of sections

● Regular in-person sections with local sections
leaders

● “Tele-sections” via Google Hangouts (think skype
with video) with section leaders who are not in the
Stanford area.

● Section content is exactly the same and you can still
ask questions during section.

● If you strongly prefer one over the other, then in your
section preferences only select sections of the form you
want.

console.h, cout and endl

● Some people running Windows have
been having issues with the console
window quickly disappearing

● It appears that for many people the issue
can be solved doing one or both of the
following:
● Downloading the latest version Java
● Passing endl to cout at least once in your

program

Where are we in the course?

● For the moment we are done with C++
specific features

● Today we start learning about common
data structures used in Computer
Science

● After this we have...
● Advanced Recursion
● Algorithmic Analysis and Sorting
● Implementing data structures
● Graphs and Graph Algorithms

Organizing Data

● In order to model and solve problems, we have
to have a way of representing structured data.

● We need ways of representing concepts like

● sequences of elements,
● sets of elements,
● associations between elements,
● etc.

Collections

● A collection class (or container class)
is a data type used to store and organize
data in some form.

● Understanding and using collection
classes is critical to good software
engineering.

● Today and next week is dedicated to
exploring different collections and how to
harness them appropriately.

● We'll discuss efficiency issues and
implementations later on.

Collections

● There are TONS of C++ libraries for collection
classes

● General Purpose: STL, Boost
● Most companies have their own libraries

● So which library should we teach you?

● Because there are so many libraries, we think
it's best to focus on skills and concepts, rather
than on one specific library.

● At Stanford, we decided to create our own
library for CS106B which we've optimized to be
easy to learn and use.

TokenScanner

● The TokenScanner class can be used to break apart a string into
smaller pieces.

● Construct a TokenScanner to piece apart a string as follows:

TokenScanner scanner(str);

● Configure options (ignore comments, ignore spaces, add
operators, etc.)

● Use the following loop to read tokens one at a time:

 while (scanner.hasMoreTokens()) {

 string token = scanner.nextToken();

 /* … process token … */

 }

● Check the documentation for more details; there are some really
cool tricks you can do with the TokenScanner!

Text Parsing

● TONS of websites that you can download data from in the form of
“comma-separated-values” (csv) files.

● e.g. Financial Data, Climate data

● Problem: Have a string consisting of a long sequence of numbers
separated by commas.

● Goal: Extract numbers and calculate their average

● How tough would this be using string libraries?

ComputeSum.cpp
(On Computer)

Stack

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

137

42

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

42

137

271

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

271

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

271

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

42

137

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

42

137

0

Stack

● A Stack is a data structure
representing a stack of things.

● Objects can be pushed on top
of the stack or popped from
the top of the stack.

● Only the top of the stack can be
accessed; no other objects in
the stack are visible.

● Example: Function calls

0

42

137

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

[

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

[

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

[

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

(

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

{

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }
 ^

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }

Balancing Parentheses

 int foo() { if (x * (y + z[1]) < 137) { x = 1; } }

Balancing Parentheses
(On Board)

A Few Functions to Make Life
Easier...

bool isLeftParen(char ch) {
return ch == '(' || ch == '{' || ch '[';

}

bool isRightParen(char ch) {
return ch == ')' || ch == '}' || ch ']';

}

bool isMatchingParen(char left, char right) {
return (left == '(' && right == ')') ||

(left == '[' && right == ']') ||
(left == '{' && right == '}');

}

Combining TokenScanner and Stack:
Evaluating Expressions

Evaluating Expressions

● We want to be able to evaluate simple arithmetic
expressions composed of integers and the four basic
arithmetic operators “+,-,*,/”

● 5 * 20 – 8 + 5
● Proposed algorithm: just evaluate the expression from

left to right.

● 5 * 8 + 7 = 40 + 7 = 47
● 1 + 2 + 4 = 3 + 4 = 7

● It works...or does it?

● 7 + 5 * 8 = 12 * 8 = 96???

Evaluating Expressions

● Evaluating expressions is much trickier
than it might seem due to issues of
precedence.
● 1 + 3 * 5 – 7 = 9

● We can't just evaluate operators from left
to right

● How do we evaluate an expression?

The Challenge

1 3 7 + 4 2 × 2 7 1

Evaluating Expressions

● Two separate concerns in evaluating
expressions:
● Scanning the string and breaking it apart

into its constituent components (tokens).
● Parsing the tokens to determine what

expression is encoded.

● We can scan the string with the
TokenScanner. How might we handle
parsing?

The Shunting-Yard Algorithm

2 + 3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands

2 + 3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 + 3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 + 3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+ 3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+ 3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+ 3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2
+

3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 +

3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 +

3 * 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 +

3

* 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

* 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

* 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

* 5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

* 5 - 6 / 2

Multiplication has higher
precedence than addition, so
we will postpone the addition

until after we've done the
multiplication.

Multiplication has higher
precedence than addition, so
we will postpone the addition

until after we've done the
multiplication.

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

*

5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 +

3 *

5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 +

3 *

5 - 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 +

3 *

5

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

*5

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

*5

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

*5

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3

*5

- 6 / 2

Subtraction has lower
precedence than

multiplication, so we need to
evaluate the multiply before

the subtract.

Subtraction has lower
precedence than

multiplication, so we need to
evaluate the multiply before

the subtract.

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+3
*5

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+

3 * 5

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+

15

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+

- 6 / 2

15

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+

- 6 / 2

15

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+

- 6 / 2

15

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+

- 6 / 2

15Subtraction has equal
precedence to addition so we
evaluate the add before the

subtract.

Subtraction has equal
precedence to addition so we
evaluate the add before the

subtract.

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2

+

- 6 / 2

15

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

2 +

- 6 / 2

15

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

- 6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17
-

6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17 -

6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17 -

6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17 -

6

/ 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-6

/ 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-6

/ 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17
-6
/

2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17 -

6 /

2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17 -

6 /

2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17 -

6 /

2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-6

/2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-6

/2Now that we've read all the
tokens, we can finish

evaluating all the
expressions.

Now that we've read all the
tokens, we can finish

evaluating all the
expressions.

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-6

/2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-

6 / 2

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-

3

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-3

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-3

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17

-3

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

17 - 3

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

14

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

14

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

14

The Shunting-Yard Algorithm

Operands Operators

2 + 3 * 5 - 6 / 2

14

The result is now on
top of the operands

stack.

The result is now on
top of the operands

stack.

The Shunting-Yard Algorithm

● Maintain a stack of operators and a stack of operands.

● For each token:
● If it's a number, push it onto the operand stack.
● If it's an operator:

– Keep evaluating operands until the scanned operator has higher
precedence than the most recent operator.

– Push the operator onto the operator stack.

● Once all input is done, keep evaluating operators until
no operators remain.

● The value on the operand stack is the overall result.

Pseudo-code(On Board)
shunting-yard.cpp (Computer)

Extensions to Shunting-Yard

● How might you update the shunting-yard
algorithm to:
● Handle/report syntax errors in the input?
● Support parentheses?
● Support functions like sin, cos, and tan?
● Support variables?

● For more information on scanning and
parsing, take CS124 (From Languages to
Information) or CS143 (Compilers).

Hey Aubrey, do you expect me to memorize every
method of every class?...

No! Computer Science is not about memorizing
method names

Collections Documentation

Next Time

● Vector
● A standard collection for sequences.

● Grid
● A standard collection for 2D data.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159

