Collections, Part One



Announcements

« Section signups open today at 5PM and
close Sunday at 5PM.

e Sign up for section at
http://cs198.stanford.edu/section

 Link available on the CS106B course
website.


http://cs198.stanford.edu/section

In Person vs. Remote Sections

* In order to keep section sizes small we are offering two
types of sections

 Regular in-person sections with local sections
leaders

« “Tele-sections” via Google Hangouts (think skype
with video) with section leaders who are not in the
Stanford area.

« Section content is exactly the same and you can still
ask questions during section.

« If you strongly prefer one over the other, then in your
section preferences only select sections of the form you
want.



console.h, cout and endl

 Some people running Windows have
been having issues with the console
window quickly disappearing

It appears that for many people the issue
can be solved doing one or both of the
following:

 Downloading the latest version Java

« Passing endl to cout at least once in your
program



Where are we in the course?

« For the moment we are done with C++
specific features

« Today we start learning about common
data structures used in Computer
Science

 After this we have...

 Advanced Recursion

» Algorithmic Analysis and Sorting
 Implementing data structures
 Graphs and Graph Algorithms



Organizing Data

e In order to model and solve problems, we have
to have a way of representing structured data.

 We need ways of representing concepts like
e sequences of elements,
« sets of elements,
e associations between elements,
e etc.



Collections

A collection class (or container class)
is a data type used to store and organize
data in some form.

 Understanding and using collection
classes is critical to good software
engineering.

 Today and next week is dedicated to
exploring different collections and how to
harness them appropriately.

« We'll discuss efficiency issues and
implementations later on.



Collections

There are TONS of C++ libraries for collection
classes

 General Purpose: STL, Boost
« Most companies have their own libraries
So which library should we teach you?

Because there are so many libraries, we think
it's best to focus on skills and concepts, rather
than on one specific library.

At Stanford, we decided to create our own
library for CS106B which we've optimized to be
easy to learn and use.



TokenScanner

The TokenScanner class can be used to break apart a string into
smaller pieces.

Construct a TokenScanner to piece apart a string as follows:
TokenScanner scanner (str) ;

Configure options (ignore comments, ignore spaces, add
operators, etc.)

Use the following loop to read tokens one at a time:
while (Sscanner.hasMoreTokens ()) {
string token = scanner.nextToken () ;

/* .. process token .. */

}

Check the documentation for more details; there are some really
cool tricks you can do with the TokenScanner!



Text Parsing

TONS of websites that you can download data from in the form of
“comma-separated-values” (csv) files.

« e.g. Financial Data, Climate data

Problem: Have a string consisting of a long sequence of numbers
separated by commas.

Goal: Extract numbers and calculate their average

How tough would this be using string libraries?

Computesum. Cpp
(On Computer)



Stack



Stack

« A Stack is a data structure
representing a stack of things.

* Objects can be pushed on top
of the stack or popped from
the top of the stack.

 Only the top of the stack can be
accessed; no other objects in
the stack are visible.

« Example: Function calls
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Stack

« A Stack is a data structure
representing a stack of things. 0

* Objects can be pushed on top 42
of the stack or popped from
the top of the stack.

 Only the top of the stack can be
accessed; no other objects in
the stack are visible.

« Example: Function calls
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}
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Balancing Parentheses

int foo() { 1f (x * (y + z[1l]) < 137) { x = 1;

Balancing Parenthesec®==

(On Board)




A Few Functions to Make Life

Easier...
bool isLeftParen (char ch) {
return ch == '"("'" || ch == "'"{"'" || ch '[';

}

bool i1isRightParen (char ch) {
return ch == ")'" || ch == "}'" || ch ']"';

}

bool 1sMatchingParen (char left, char right) {

(c
return (left == '"(' && right == ")"') ||
(left == '"['" && right == "'1") ||
(left == '"{' && right == '}");



Combining TokenScanner and Stack:
Evaluating Expressions



Evaluating Expressions

« We want to be able to evaluate simple arithmetic
expressions composed of integers and the four basic
arithmetic operators “+,-,*,/”

e« 5*20-8+ 5

* Proposed algorithm: just evaluate the expression from
left to right.

e« 5*84+7=40+7 =47
e 1 +2+4=3+4=7
« It works...or does it?
e 74+ 5*8=12*8 =967??



Evaluating Expressions

» Evaluating expressions is much trickier
than it might seem due to issues of
precedence.

+14+3%5-7=9

« We can't just evaluate operators from left
to right

« How do we evaluate an expression?



The Challenge




Evaluating Expressions

 Two separate concerns in evaluating
expressions:

 Scanning the string and breaking it apart
into its constituent components (tokens).

 Parsing the tokens to determine what
expression is encoded.

 We can scan the string with the
TokenScanner. How might we handle

parsing?
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Multiplication has higher 3
precedence than addition, so
we will postpone the addition 2
until after we've done the

multiplication.
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The Shunting-Yard Algorithm

Maintain a stack of operators and a stack of operands.

For each token:

« Ifit's a number, push it onto the operand stack.
« If it's an operator:

- Keep evaluating operands until the scanned operator has higher
precedence than the most recent operator.

- Push the operator onto the operator stack.

Once all input is done, keep evaluating operators until
no operators remain.

The value on the operand stack is the overall result.

Pseudo-code(On Board)
shunting-yard.cpp (Computer)



Extensions to Shunting-Yard

« How might you update the shunting-yard
algorithm to:

« Handle/report syntax errors in the input?
e Support parentheses?
« Support functions like sin, cos, and tan?
« Support variables?
 For more information on scanning and

parsing, take CS124 (From Languages to
Information) or CS143 (Compilers).



Hey Aubrey, do you expect me to memorize every
method of every class?...

No! Computer Science is not about memorizing
method names
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Next Time

e Vector
« A standard collection for sequences.
e Grid

« A standard collection for 2D data.
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