
  

Collections, Part Two



  

Today

● Short Review From Last Week
● Vector

● Grid

● Vector Performance

● Containers: Common mistakes



  

From Last Week...



  

A recursive solution is a solution that is 
defined in terms of itself.



  

Recursion: Fibonacci Numbers

● Fibonacci Numbers
● 0, 1, 1, 2, 3, 5, 8, 13, 21, …
● Defined recursively:

fib(n) = n                  if n = 0 or 1
fib(n-1) + fib(n-2)  otherwise



Another View of Factorials

n! = 1                  if n = 0
n × (n – 1)!  otherwise

int factorial(int n) {
    if (n == 0) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}



  

TokenScanner

● The TokenScanner class can be used to break apart a string into 
smaller pieces.

● Construct a TokenScanner to piece apart a string as follows:

TokenScanner scanner(str); 

● Configure options (ignore comments, ignore spaces, add 
operators, etc.)

● Use the following loop to read tokens one at a time:

     while (scanner.hasMoreTokens()) {

         string token = scanner.nextToken();

         /* … process token … */

     }

● Check the documentation for more details; there are some really 
cool tricks you can do with the TokenScanner!



  

Stack

● A Stack is a data structure 
representing a stack of things.

● Objects can be pushed on top 
of the stack or popped from 
the top of the stack.

● Only the top of the stack can be 
accessed; no other objects in 
the stack are visible.

● Example: Function calls

0

42

137



  

Vector



  

Vector

● The Vector is a collection class 
representing a list of things.
● Similar to Java's ArrayList type.

● Probably the single most commonly used 
collection type in all programming.



  

Example: Cell Tower Purchasing



  

Buying Cell Towers

137 42 95 272 52



  

Buying Cell Towers

137 42 95 272 52



  

Buying Cell Towers

14 22 13 25 30 11 9



  

Buying Cell Towers

14 22 13 25 30 11 9



  

Buying Cell Towers

● Given the populations of each city, what 
is the largest number of people you can 
provide service to given that no two cell 
towers are adjacent?

● Proposed Algorithm: Iteratively pick the 
“largest population” cell towers from the 
set of remaining towers we can select
● Problems with this algorithm?



  

Proposed Algorithm: Problem

99 100 99



  

Proposed Algorithm: Problem

99 100 99



  

Buying Cell Towers

● Our proposed algorithm won't always 
give us the correct answer!

● Correct algorithm is best explained 
pictorially...



  

14 22 13 25 30 11 9



  

14 22 13 25 30 11 9



  

14 22 13 25 30 11 9



  

14 22 13 25 30 11 9

Maximize what's left in here.



  

14 22 13 25 30 11 9

14 22 13 25 30 11 9

Maximize what's left in here.



  

14 22 13 25 30 11 9

14 22 13 25 30 11 9

Maximize what's left in here.



  

14 22 13 25 30 11 9

14 22 13 25 30 11 9

Maximize what's left in here.

Maximize what's left in here.



  

Cell-towers Pseudocode
(On Board)



  

cell-towers.cpp
(On Computer)



  

14 22 13

How the Recursion Works



  

14 22 13

22 13

How the Recursion Works



  

14 22 13

22 13

13

How the Recursion Works



  

14 22 13

22 13

13

How the Recursion Works

Best is
13



  

14 22 13

22 13

13

How the Recursion Works

+22

Best is
13



  

14 22 13

22 13

13

How the Recursion Works

+22

Best is
13

Best is
0



  

14 22 13

22 13

13

How the Recursion Works

+22

Best is
13

Best is
0

Best is
22



  

14 22 13

22 13

13

13

How the Recursion Works

+14

+22

Best is
13

Best is
0

Best is
22



  

14 22 13

22 13

13

13

How the Recursion Works

+14

+22

Best is
13

Best is
0

Best is
22

Best is
13



  

14 22 13

22 13

13

13

How the Recursion Works

+14

+22

Best is
13

Best is
0

Best is
22

Best is
13

Best is
27



  

How the Recursion Works

20 25 23 17

25 23 17

23 17

17

17

23 17

17

 

Best:
17

 

Best:
0

 

Best:
0

 

Best:
17

 

Best:
17

+25 +23

+20

 

Best:
23

 

Best:
32

 

Best:
23

 

Best:
43

+23



  

Pass-by-Reference and Objects

● Recall: In C++, all parameters are passed by 
value unless specified otherwise.

● Passing by value makes a copy of the 
parameter

● When using container types (Stack, Vector, 
etc.) it is often useful to use pass-by-reference 
for efficiency reasons.

● Takes a long time to make a copy of a large 
collection!

● Let's see what happens when we do this for 
cell-towers.cpp!



  

Vector or Stack?

● Any Stack can be replaced with a Vector 
with which we only add and remove from 
the back.
● So why should we ever use a Stack?
● Hint: It's not for performance reasons



  

Vector or Stack?

● Reason 1: It makes your code easier to 
read

● Someone reading your code knows that you are only 
going to read and add to the top of the Stack.  

● Reason 2: It protects you from making 
mistakes

● If you use a Vector, you might accidentally 
add/read/remove from the middle instead of the end.

● Summary: Use Stack when the algorithm 
lets you, otherwise use Vector



  

Grid



  

Two-Dimensional Data

● The Grid type can be used to store two-
dimensional data.
● e.g. matrices, scrabble boards, etc.

● Can construct a grid of a certain size by 
writing

Grid<Type> g(numRows, numCols); 

● Can access individual elements by 
writing

g[rows][cols]



  

Stanford is not as safe as it seems...



  

Velociraptors Spotted on 
Campus!

● Everyone knows how dangerous 
velociraptors are, but not everyone 
knows how to survive an attack.



  

Good News

● Luckily, velociraptors are constrained to 
exist on cells of a Grid!



  

Good News

● Also, velociraptors can only move in the 
8 cardinal and ordinal directions



  

Good News

● A natural question arises – given a grid of 
locations of velociraptors, is there a 
position on the grid that is safe?



  

Good News

● A natural question arises – given a grid of 
locations of velociraptors, is there a 
position on the grid that is safe?

● Represent the grid with...a Grid<bool> 
where true indicates that a velociraptor 
is there.



  

Good News

● A natural question arises – given a grid of 
locations of velociraptors, is there a 
position on the grid that is safe?

● Represent the grid with...a Grid<bool> 
where true indicates that a velociraptor 
is there.

F F F F F F F F

F F F F F F T F

F F F T F F F F

F F F F F F F F

F F F F F F F T

F T F F F F F F

F F F F T F F F

F F F F F F F F



  

raptor-defense.cpp
(Computer)



  

Grid or Vector<Vector >?

● Any Grid can be replaced with a 
Vector<Vector > in which we make the 
length of the “inner vectors” equal
● So why should we ever use a Grid?

● For reasons similar to the “Vector or 
Stack” decision:
● Easier to read.
● Less likely to make a mistake.



  

Vector Performance
● Where you add/remove from a Vector 

can have a huge performance impact



  

Vector Performance?

Vector<int> myVector;

for (int i = 0; i < 1000; i++) 

myVector[i] = 0;

Vector<int> myVector;

for (int i = 0; i < 1000; i++) 

myVector.insert(0,i);

vs



  

Vector Performance
● Why was this?

● When you remove (or insert) at the 
beginning of a Vector, all the other elements 
in the Vector must be shifted over

● This can have big performance 
consequences
– We will learn about other data structures that 

solve this

● It turns out, reading from a Vector takes 
the same amount of time no matter 
where you read from
● We'll learn why later in the quarter



  

Collections: Common Pitfall 1

Vector numbers;



  

Collections: Common Pitfall 1

Vector<int> numbers;



  

Collections: Common Pitfall 2

Vector<Vector<int>> numbers;



  

Collections: Common Pitfall 2

Vector<Vector<int> > numbers;



  

Collections: Common Pitfall 3

void myFunction(Grid<bool> bigGrid);



  

Collections: Common Pitfall 3

void myFunction(Grid<bool> &bigGrid);



  

Next Time

● Map
● A collection for storing associations between 

elements.
● Set

● A collection for storing an unordered group 
of elements.

● Lexicon
● A special kind of Set.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

