
  

Collections, Part Two



  

Today

● Short Review From Last Week
● Vector

● Grid

● Vector Performance

● Containers: Common mistakes



  

From Last Week...



  

A recursive solution is a solution that is 
defined in terms of itself.



  

Recursion: Fibonacci Numbers

● Fibonacci Numbers
● 0, 1, 1, 2, 3, 5, 8, 13, 21, …
● Defined recursively:

fib(n) = n                  if n = 0 or 1
fib(n-1) + fib(n-2)  otherwise



Another View of Factorials

n! = 1                  if n = 0
n × (n – 1)!  otherwise

int factorial(int n) {
    if (n == 0) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}



  

TokenScanner

● The TokenScanner class can be used to break apart a string into 
smaller pieces.

● Construct a TokenScanner to piece apart a string as follows:

TokenScanner scanner(str); 

● Configure options (ignore comments, ignore spaces, add 
operators, etc.)

● Use the following loop to read tokens one at a time:

     while (scanner.hasMoreTokens()) {

         string token = scanner.nextToken();

         /* … process token … */

     }

● Check the documentation for more details; there are some really 
cool tricks you can do with the TokenScanner!



  

Stack

● A Stack is a data structure 
representing a stack of things.

● Objects can be pushed on top 
of the stack or popped from 
the top of the stack.

● Only the top of the stack can be 
accessed; no other objects in 
the stack are visible.

● Example: Function calls

0

42

137



  

Vector



  

Vector

● The Vector is a collection class 
representing a list of things.
● Similar to Java's ArrayList type.

● Probably the single most commonly used 
collection type in all programming.



  

Example: Cell Tower Purchasing



  

Buying Cell Towers

137 42 95 272 52



  

Buying Cell Towers

137 42 95 272 52



  

Buying Cell Towers

14 22 13 25 30 11 9



  

Buying Cell Towers

14 22 13 25 30 11 9



  

Buying Cell Towers

● Given the populations of each city, what 
is the largest number of people you can 
provide service to given that no two cell 
towers are adjacent?

● Proposed Algorithm: Iteratively pick the 
“largest population” cell towers from the 
set of remaining towers we can select
● Problems with this algorithm?



  

Proposed Algorithm: Problem

99 100 99



  

Proposed Algorithm: Problem

99 100 99



  

Buying Cell Towers

● Our proposed algorithm won't always 
give us the correct answer!

● Correct algorithm is best explained 
pictorially...



  

14 22 13 25 30 11 9
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14 22 13 25 30 11 9



  

14 22 13 25 30 11 9

Maximize what's left in here.
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14 22 13 25 30 11 9

14 22 13 25 30 11 9

Maximize what's left in here.

Maximize what's left in here.



  

Cell-towers Pseudocode
(On Board)



  

cell-towers.cpp
(On Computer)
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How the Recursion Works
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How the Recursion Works

20 25 23 17

25 23 17

23 17

17

17

23 17

17
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Pass-by-Reference and Objects

● Recall: In C++, all parameters are passed by 
value unless specified otherwise.

● Passing by value makes a copy of the 
parameter

● When using container types (Stack, Vector, 
etc.) it is often useful to use pass-by-reference 
for efficiency reasons.

● Takes a long time to make a copy of a large 
collection!

● Let's see what happens when we do this for 
cell-towers.cpp!



  

Vector or Stack?

● Any Stack can be replaced with a Vector 
with which we only add and remove from 
the back.
● So why should we ever use a Stack?
● Hint: It's not for performance reasons



  

Vector or Stack?

● Reason 1: It makes your code easier to 
read

● Someone reading your code knows that you are only 
going to read and add to the top of the Stack.  

● Reason 2: It protects you from making 
mistakes

● If you use a Vector, you might accidentally 
add/read/remove from the middle instead of the end.

● Summary: Use Stack when the algorithm 
lets you, otherwise use Vector



  

Grid



  

Two-Dimensional Data

● The Grid type can be used to store two-
dimensional data.
● e.g. matrices, scrabble boards, etc.

● Can construct a grid of a certain size by 
writing

Grid<Type> g(numRows, numCols); 

● Can access individual elements by 
writing

g[rows][cols]



  

Stanford is not as safe as it seems...



  

Velociraptors Spotted on 
Campus!

● Everyone knows how dangerous 
velociraptors are, but not everyone 
knows how to survive an attack.



  

Good News

● Luckily, velociraptors are constrained to 
exist on cells of a Grid!



  

Good News

● Also, velociraptors can only move in the 
8 cardinal and ordinal directions



  

Good News

● A natural question arises – given a grid of 
locations of velociraptors, is there a 
position on the grid that is safe?



  

Good News

● A natural question arises – given a grid of 
locations of velociraptors, is there a 
position on the grid that is safe?

● Represent the grid with...a Grid<bool> 
where true indicates that a velociraptor 
is there.



  

Good News

● A natural question arises – given a grid of 
locations of velociraptors, is there a 
position on the grid that is safe?

● Represent the grid with...a Grid<bool> 
where true indicates that a velociraptor 
is there.

F F F F F F F F

F F F F F F T F

F F F T F F F F

F F F F F F F F

F F F F F F F T

F T F F F F F F

F F F F T F F F

F F F F F F F F



  

raptor-defense.cpp
(Computer)



  

Grid or Vector<Vector >?

● Any Grid can be replaced with a 
Vector<Vector > in which we make the 
length of the “inner vectors” equal
● So why should we ever use a Grid?

● For reasons similar to the “Vector or 
Stack” decision:
● Easier to read.
● Less likely to make a mistake.



  

Vector Performance
● Where you add/remove from a Vector 

can have a huge performance impact



  

Vector Performance?

Vector<int> myVector;

for (int i = 0; i < 1000; i++) 

myVector[i] = 0;

Vector<int> myVector;

for (int i = 0; i < 1000; i++) 

myVector.insert(0,i);

vs



  

Vector Performance
● Why was this?

● When you remove (or insert) at the 
beginning of a Vector, all the other elements 
in the Vector must be shifted over

● This can have big performance 
consequences
– We will learn about other data structures that 

solve this

● It turns out, reading from a Vector takes 
the same amount of time no matter 
where you read from
● We'll learn why later in the quarter



  

Collections: Common Pitfall 1

Vector numbers;



  

Collections: Common Pitfall 1

Vector<int> numbers;



  

Collections: Common Pitfall 2

Vector<Vector<int>> numbers;



  

Collections: Common Pitfall 2

Vector<Vector<int> > numbers;



  

Collections: Common Pitfall 3

void myFunction(Grid<bool> bigGrid);



  

Collections: Common Pitfall 3

void myFunction(Grid<bool> &bigGrid);



  

Next Time

● Map
● A collection for storing associations between 

elements.
● Set

● A collection for storing an unordered group 
of elements.

● Lexicon
● A special kind of Set.
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